Client/Sending Facility: Seattle Sperm Bank 4915 25th Ave Ne Ste 204 SEATTLE, WA 98105 Ph: (206)588-1484 Fax: (206) 466-4696 WAB-55 LCLS Specimen Number: 222-129-1005-0 Account Number: Patient Name: 12204, DONOR Ordering Physician: JOLLIFFE Date of Birth: Specimen Type: BLOOD Gender: M Client Reference: Patient ID: Date Collected: 08/10/2017 Lab Number: (J17-3002 L Date Received: 08/11/2017 Indications: DONOR Date Reported: 08/18/2017 Test: Chromosome, Blood, Routine Cells Counted: 15 Cells Karyotyped: 2 Cells Analyzed: 5 Band Resolution: 550 CYTOGENETIC RESULT: 46,XY INTERPRETATION: NORMAL MALE KARYOTYPE Cytogenetic analysis of PHA stimulated cultures has revealed a MALE karyotype with an apparently normal GTG banding pattern in all cells observed. This result does not exclude the possibility of subtle rearrangements below the resolution of cytogenetics or congenital anomalies due to other etiologies. Client/Sending Facility: Seattle Sperm Bank 4915 25th Ave Ne Ste 204 SEATTLE, WA 98105 Ph: (206)588-1484 Fax: (206) 466-4696 WAB-55 LCLS Specimen Number: 222-129-1005-0 Patient Name: 12204, DONOR Date of Birth: Gender: M Patient ID: Lab Number: (J17-3002 L Account Number: Ordering Physician: JOLLIFFE Specimen Type: BLOOD Client Reference: Date Collected: 08/10/2017 Date Received: 08/11/2017 Client/Sending Facility: Seattle Sperm Bank 4915 25th Ave Ne Ste 204 SEATTLE, WA 98105 Ph: (206)588-1484 Fax: (206) 466-4696 **WAB-55** LCLS Specimen Number: 222-129-1005-0 Patient Name: 12204, DONOR Date of Birth: Gender: M Patient ID: Lab Number: (J17-3002 L Account Number: Ordering Physician: JOLLIFFE Specimen Type: BLOOD Client Reference: Date Collected: 08/10/2017 Date Received: 08/11/2017 Hiba Risheg, PhD., FACMG Patricia Kandalaft, MD Medical Director Peter Papenhausen, PhD National Director of Cytogenetics Technical component performed by Laboratory Corporation of America Holdings, 550 17th Ave. Suite 200, SEATTLE, WA, 98122-5789 (206) 861-7050 Professional Component performed by LabCorp/Dynacare CLIA 50D0632667, 550 17th Ave. Suite 200, Seattle WA 98122-5789. Medical Director, Patricia Kandalaft, MD Integrated Genetics is a brand used by Esoterix Genetic Laboratories, LLC, a wholly-owned subsidiary of Laboratory Corporation of America Holdings. This document contains private and confidential health information protected by state and federal law. SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe 4915 25th Ave NE, Suite 204W Seattle, WA 98105 Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 08/22/2017 MALE **DONOR 12204** DOB: Ethnicity: East Asian Sample Type: EDTA Blood Date of Collection: 08/10/2017 Date Received: 08/11/2017 Date Tested: 08/22/2017 Barcode: 11004212187624 Indication: Egg or sperm donor FEMALE N/A POSITIVE: CARRIER ## Foresight™ Carrier Screen #### ABOUT THIS TEST The **Counsyl Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease. #### **RESULTS SUMMARY** | Risk Details | DONOR 12204 | Partner | |---|---|---| | Panel Information | Foresight Carrier Screen
Universal Panel Minus X-Linked
(102 conditions tested) | N/A | | POSITIVE: CARRIER Hypophosphatasia, Autosomal Recessive | CARRIER* NM_000478.4(ALPL):c.407G>A (R136H, aka R119H) heterozygote † | The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps". | | Reproductive Risk: 1 in 630
Inheritance: Autosomal Recessive | (11301), and (1131) Heterozygote | | [†]Likely to have a negative impact on gene function. *Carriers generally do not experience symptoms. No disease-causing mutations were detected in any other gene tested. A complete list of all conditions tested can be found on page 6. #### CLINICAL NOTES None #### NEXT STEPS - Carrier testing should be considered for the diseases specified above for the patient's partner, as both parents must be carriers before a child is at high risk of developing the disease. - Genetic counseling is recommended and patients may wish to discuss any positive results with blood relatives, as there is an increased chance that they are also carriers. Counsyl has renamed its products effective July 19, 2017, The Family Prep Screen is now the Foresight Carrier Screen, The new names now appear on all communications from Counsyl. If you have any questions, please contact Counsyl directly. RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A **POSITIVE: CARRIER** # Hypophosphatasia, Autosomal Recessive Gene: ALPL | Inheritance Pattern: Autosomal Recessive Reproductive risk: 1 in 630 Risk before testing: 1 in 100,000 | Patient | DONOR 12204 | No partner tested | |----------------|---|-------------------| | Result | ○ Carrier | N/A | | Variant(s) | NM_000478.4(ALPL):c.407G>A(R136H, aka R119H)
heterozygote [†] | N/A | | Methodology | Sequencing with copy number analysis | N/A | | Interpretation | This individual is a carrier of hypophosphatasia, autosomal recessive. Carriers generally do not experience symptoms. R119H may be associated with a less severe form of hypophosphatasia, autosomal recessive. | N/A | | Detection rate | >99% | N/A | | Exons tested | NM 000478:2-12. | N/A | †Likely to have a negative impact on gene function. ### What is Hypophosphatasia, Autosomal Recessive? Hypophosphatasia is an inherited disorder that disrupts a process called mineralization, in which the body deposits minerals like calcium and phosphorus into teeth and bones. Proper mineralization is necessary to make bones strong and rigid, and make teeth strong enough to withstand years of chewing. Hypophosphatasia can have two types of inheritance patterns: autosomal recessive (symptoms are seen when both disease genes have mutations) or autosomal dominant (symptoms occur when only one of two disease genes has a mutation). With autosomal recessive hypophosphatasia, symptoms can vary greatly depending upon which mutations a person carries. Some forms of the disease are severe while other forms are extremely mild. The most severe form of hypophosphatasia appears before birth or in early childhood. In many cases, infants are stillborn because their skeletons fail to form. Other affected infants are born with short limbs, soft skull bones, and an abnormally shaped chest caused by soft, weak ribs. Approximately half the infants born with the condition die of respiratory failure in the first few weeks of life. Those who survive may have life-threatening complications such as breathing problems, seizures, or high blood calcium levels leading to kidney damage. In a less severe form, children show the first signs of the condition by losing their baby teeth before the age of five. As they grow, they may be below average in height, with bowed legs or knock knees, large wrist and ankle joints, and an abnormally shaped skull. They are more prone to broken bones, bone pain, and arthritis. They may have trouble learning to walk or may develop a waddling gait. Their teeth may crack or decay more easily than normal. The mildest form of the disorder is called odontohypophosphatasia. It only affects the teeth. People with this form of the condition have abnormal tooth development and lose their teeth early, but do not have skeletal abnormalities. Occasionally, people with hypophosphatasia do not develop any symptoms until middle age. The most common symptoms are early tooth loss and frequent, slow-healing stress fractures in the feet. They may also develop arthritis. RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 MALE DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A ## How common is Hypophosphatasia, Autosomal Recessive? Hypophosphatasia affects approximately 1 in 100,000 people and is most common in Caucasians. The disease is particularly common in a particular Mennonite population in Ontario, Canada, where it affects 1 in 2,500 people. ## How is Hypophosphatasia, Autosomal Recessive treated? Infants with the most severe form of the condition usually require mechanical help to breathe and may need surgery to release pressure within the skull. Vitamin B6 may relieve seizures. Children and adults with hypophosphatasia should see a dentist every year, beginning at the age of one, to preserve teeth as long as possible. Adults will eventually need false teeth. Aspirin, ibuprofen, and other pain relievers help with bone pain and arthritis. Although preventing bone fractures is difficult, orthotics may help with common fractures in the feet. People with the condition should not take bisphosphonates, which are drugs commonly prescribed to treat other bone loss conditions such as osteoporosis. They should also avoid excess vitamin D, which can make calcium build up in the blood. ## What is the prognosis for a person with Hypophosphatasia, Autosomal Recessive? Approximately 50% of infants born with the severe form of the condition will die of respiratory failure in infancy. Exact lifespan for the rest is not known. People with the milder forms of the condition have normal lifespans. SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A ## Methods and Limitations DONOR 12204 [Foresight Carrier Screen]: sequencing with copy number analysis, spinal muscular atrophy, and analysis of homologous regions. ### Sequencing with copy number analysis High-throughput sequencing and read depth-based copy number analysis are used to analyze the listed exons, as well as selected intergenic and intronic regions, of the genes in the Conditions Tested section of the report. The region of interest (ROI) of the test comprises these regions, in addition to the 20 intronic bases flanking each exon. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to high coverage and the sequences are compared to standards and references of normal variation. More than 99% of all bases in the ROI are sequenced at greater than the minimum read depth. Mutations may not be detected in areas of lower sequence coverage. Small insertions and deletions may not be as accurately determined as single nucleotide variants. Genes that have closely related pseudogenes may be addressed by a different method. *CFTR* and *DMD* testing includes analysis for both large (exon-level) deletions and duplications with an average sensitivity of 99%, while other genes are only analyzed for large deletions with a sensitivity of >75%. However, the sensitivity may be higher for selected founder deletions. If *GJB2* is tested, two large upstream deletions which overlap *GJB6* and affect the expression of *GJB2*, del(*GJB6*-D13S1830) and del(*GJB6*-D13S1854), are also analyzed. Mosaicism or somatic variants present at low levels may not be detected. If detected, these may not be reported. Detection rates are determined by using literature to estimate the fraction of disease alleles, weighted by frequency, that the methodology is unable to detect. Detection rates only account for analytical sensitivity and certain variants that have been previously described in the literature may not be reported if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease-specific rates of de novo mutations. All variants that are a recognized cause of the disease will be reported. In addition, variants that have not previously been established as a recognized cause of disease may be identified. In these cases, only variants classified as "likely" pathogenic are reported. Likely pathogenic variants are described elsewhere in the report as "likely to have a negative impact on gene function". Likely pathogenic variants are evaluated and classified by assessing the nature of the variant and reviewing reports of allele frequencies in cases and controls, functional studies, variant annotation and effect prediction, and segregation studies. Exon level duplications are assumed to be in tandem and are classified according to their predicted effect on the reading frame. Benign variants, variants of uncertain significance, and variants not directly associated with the intended disease phenotype are not reported. Curation summaries of reported variants are available upon request. ### Spinal muscular atrophy Targeted copy number analysis is used to determine the copy number of exon 7 of the *SMN1* gene relative to other genes. Other mutations may interfere with this analysis. Some individuals with two copies of *SMN1* are carriers with two *SMN1* genes on one chromosome and a *SMN1* deletion on the other chromosome. This is more likely in individuals who have 2 copies of the *SMN1* gene and are positive for the g.27134T>G SNP, which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have 2 copies of *SMN1*. ### Analysis of homologous regions A combination of high-throughput sequencing, read depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss of function mutations in certain genes that have homology to other regions. The precise breakpoints of large deletions in these genes cannot be determined, but are estimated from copy number analysis. High numbers of pseudogene copies may interfere with this analysis. If CYP21A2 is tested, patients who have one or more additional copies of the CYP21A2 gene and a loss of function mutation may not actually be a carrier of 21-hydroxylase-deficient congenital adrenal hyperplasia (CAH). Because the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are only based on published incidences for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate of overall chances for 21-hydroxylase-deficient CAH, especially in the aforementioned populations, as they do not account for non-classic CAH. If HBA11HBA2 are tested, some individuals with four alpha globin genes may be carriers, with three genes on one chromosome and a deletion on the other chromosome. This and similar, but rare, carrier states, where complementary changes exist in both the gene and a pseudogene, may not be detected by the assay. RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 MALE DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A #### Limitations In an unknown number of cases, nearby genetic variants may interfere with mutation detection. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions and technical errors. This test is designed to detect and report germline alterations. While somatic variants present at low levels may be detected, these may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes. The test does not fully address all inherited forms of intellectual disability, birth defects and genetic disease. A family history of any of these conditions may warrant additional evaluation. Furthermore, not all mutations will be identified in the genes analyzed and additional testing may be beneficial for some patients. For example, individuals of African, Southeast Asian, and Mediterranean ancestry are at increased risk for being carriers for hemoglobinopathies, which can be identified by CBC and hemoglobin electrophoresis or HPLC (ACOG Practice Bulletin No. 78. Obstet. Gynecol. 2007;109:229-37). This test was developed and its performance characteristics determined by Counsyl, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: #05D1102604. LAB DIRECTORS H. Peter Kang, MD, MS, FCAP Hyunseok Kang SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 MALE DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A # Conditions Tested 21-hydroxylase-deficient Congenital Adrenal Hyperplasia - Gene: CYP21A2. Autosomal Recessive. Analysis of Homologous Regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, 1173N, L308FfsX6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V281L, [I237N;V238E;M240K], c.293-13C>G. Detection Rate: East Asian 88%. ABCC8-related Hyperinsulinism - Gene: ABCC8. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000352:1-39. Detection Rate: East Asian >99%. Alkaptonuria - Gene: HGD. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000187:1-14. Detection Rate: East Asian >99%. Alpha Thalassemia - Genes: HBA1, HBA2. Autosomal Recessive. Analysis of Homologous Regions. Variants (13): -(alpha)20.5, --BRIT, --MEDI, --MEDI, --SEA, -- THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, anti3.7, anti4.2, del HS-40. Detection Rate: East Asian 90%. Alpha-1 Antitrypsin Deficiency - Gene: SERPINA1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000295:2-5. Detection Rate: East Asian >99%. Alpha-mannosidosis - Gene: MAN2B1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000528:1-23. Detection Rate: East Asian >99%. Alpha-sarcoglycanopathy - Gene: SGCA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000023:1-9. Detection Rate: East Asian >99%. Andermann Syndrome - Gene: SLC12A6. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_133647:1-25. Detection Rate: East Asian >99%. ARSACS - Gene: SACS. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_014363:2-10. Detection Rate: East Asian 99%. Aspartylglycosaminuria - Gene: AGA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000027:1-9. Detection Rate: East Asian >99%. Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000370:1-5. Detection Rate: East Asian >99%. Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000051:2-63. Detection Rate: East Asian >99%. Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_024649:1-17. Detection Rate: East Asian >99%. **Bardet-Biedl Syndrome, BBS10-related - Gene**: BBS10. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons**: NM_024685:1-2. **Detection Rate**: East Asian >99%. Beta-sarcoglycanopathy - Gene: SGCB. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000232:1-6. Detection Rate: East Asian >99%. Biotinidase Deficiency - Gene: BTD. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000060:1-4. Detection Rate: East Asian >99%. Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000057:2-22. Detection Rate: East Asian >99%. Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000049:1-6. Detection Rate: East Asian 98%. Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001876:2-19. Detection Rate: East Asian >99%. Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000098:1-5. Detection Rate: East Asian >99%. Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with Copy Number Analysis. Exon: NR_003051:1. Detection Rate: East Asian >99%. Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000050:3-16. Detection Rate: East Asian 86%. CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001042432:2-16. Detection Rate: East Asian >99%. CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_006493:1-4. Detection Rate: East Asian >99%. CNGB3-related Achromatopsia - Gene: CNGB3. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_019098:1-18. Detection Rate: East Asian >99%. Cohen Syndrome - Gene: VPS13B. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_017890:2-62. Detection Rate: East Asian 97%. Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000303:1-8. Detection Rate: East Asian >99%. Congenital Disorder of Glycosylation Type Ib - Gene: MPI. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_002435:1-8. Detection Rate: East Asian >99%. Congenital Finnish Nephrosis - Gene: NPHS1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_004646:1-29. Detection Rate: East Asian >99%. Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_025136:1-2. Detection Rate: East Asian >99%. **Cystic Fibrosis** - **Gene**: CFTR. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons**: NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. **Detection Rate**: East Asian >99%. Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_004937:3-12. Detection Rate: East Asian >99%. D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. **D-bifunctional Protein Deficiency - Gene:** HSD17B4. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons:** NM_000414:1-24. **Detection Rate:** East Asian 98%. Dihydropyrimidine Dehydrogenase Deficiency - Gene: DPYD. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000110:1-23. Detection Rate: East Asian 98%. Factor XI Deficiency - Gene: F11. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000128:2-15. Detection Rate: East Asian >99%. Familial Dysautonomia - Gene: IKBKAP. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_003640:2-37. Detection Rate: East Asian >99%. Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000243:1-10. Detection Rate: East Asian >99%. Fanconi Anemia Type C - Gene: FANCC. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000136:2-15. Detection Rate: East Asian >99%. FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001079802:3-11. Detection Rate: East Asian 10%. Galactosemia - Gene: GALT. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000155:1-11. Detection Rate: East Asian >99%. Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of Homologous Regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: East Asian 60%. GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness - Gene: GJB2. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_004004:1-2. Detection Rate: East Asian >99%. Glutaric Acidemia Type 1 - Gene: GCDH. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000159:2-12. Detection Rate: East Asian >99%. Glycogen Storage Disease Type Ia - Gene: G6PC. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000151:1-5. Detection Rate: East Asian >99%. **Glycogen Storage Disease Type Ib - Gene**: SLC37A4. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons**: NM_001164277:3-11. **Detection Rate**: East Asian > 99%. **Glycogen Storage Disease Type III - Gene**: AGL. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons:** NM_000642:2-34. **Detection Rate**: East Asian >99%. **Glycogen Storage Disease Type V - Gene**: PYGM. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons**: NM_005609:1-20. **Detection Rate**: East Asian >99%. GRACILE Syndrome - Gene: BCS1L. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_004328:3-9. Detection Rate: East Asian >99%, HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000182:1-20. Detection Rate: East Asian >99%. Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000518:1-3. Detection Rate: East Asian >99%. SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 MALE DONOR 12204 FEMALE N/A DOB: Ethnicity: East Asian Barcode: 11004212187624 Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000035:2-9. Detection Rate: East Asian > 99%. Herlitz Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000227:1-38. Detection Rate: East Asian >99%. Herlitz Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000228:2-23. Detection Rate: East Asian >99%. Herlitz Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_005562:1-23. Detection Rate: East Asian >99%. Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000520:1-14. Detection Rate: East Asian > 99%. Homocystinuria Caused by Cystathionine Beta-synthase Deficiency - Gene: CBS. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000071:3-17. Detection Rate: East Asian >99%. **Hypophosphatasia, Autosomal Recessive - Gene**: ALPL. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons**: NM_000478:2-12. **Detection Rate**: East Asian >99% Inclusion Body Myopathy 2 - Gene: GNE. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001128227:1-12. Detection Rate: East Asian >99% Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_002225:1-12. Detection Rate: East Asian >99%. Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001173990:1-5. Detection Rate: East Asian >99%. Krabbe Disease - Gene: GALC. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000153:1-17. Detection Rate: East Asian >99%. **Lipoamide Dehydrogenase Deficiency - Gene**: DLD. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons:** NM_000108:1-14. **Detection Rate**: East Asian >99%. Maple Syrup Urine Disease Type 1B - Gene: BCKDHB. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_183050:1-10. Detection Rate: East Asian >99%. Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000016:1-12. Detection Rate: East Asian >99%. Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_015166:2-12. Detection Rate: East Asian >99%. Metachromatic Leukodystrophy - Gene: ARSA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000487:1-8. Detection Rate: East Asian >99%. Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_020533:1-14. Detection Rate: East Asian >99%. Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000203:1-14. Detection Rate: East Asian >99%. Muscle-eye-brain Disease - Gene: POMGNT1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_017739:2-22. Detection Rate: East Asian 96% NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001271208:3-80,117-183. Detection Rate: East Asian 92%. Niemann-Pick Disease Type C - Gene: NPC1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000271:1-25. Detection Rate: East Asian >99%. Niemann-Pick Disease, SMPD1-associated - Gene: SMPD1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000543:1-6. Detection Rate: East Asian >99%. Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_002485:1-16. Detection Rate: East Asian >9946 Northern Epilepsy - Gene: CLN8. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_018941:2-3. Detection Rate: East Asian >99%. PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_033056:2-33. Detection Rate: East Asian 93%. Pendred Syndrome - Gene: SLC26A4. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000441:2-21. Detection Rate: East Asian >99%. PEX1-related Zellweger Syndrome Spectrum - Gene: PEX1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000466:1-24. Detection Rate: Fast Asian >0004 Phenylalanine Hydroxylase Deficiency - Gene: PAH. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000277:1-13. Detection Rate: East Asian >99%. PKHD1-related Autosomal Recessive Polycystic Kidney Disease - Gene: PKHD1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_138694:2-67. Detection Rate: East Asian >99%. Polyglandular Autoimmune Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000383:1-14. Detection Rate: East Asian >99%. Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000152:2-20. Detection Rate: East Asian >99%. PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000310:1-9. Detection Rate: East Asian > 99%. **Primary Carnitine Deficiency** - **Gene:** SLC22A5. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons:** NM_003060:1-10. **Detection Rate:** East Asian >99%. Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000030:1-11. Detection Rate: East Asian >99%. **Primary Hyperoxaluria Type 2** - **Gene**: GRHPR. Autosomal Recessive. Sequencing with Copy Number Analysis. **Exons**: NM_012203:1-9. **Detection Rate**: East Asian >99%. PROP1-related Combined Pituitary Hormone Deficiency - Gene: PROP1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_006261:1-3. Detection Rate: East Asian >99%. Pseudocholinesterase Deficiency - Gene: BCHE. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000055:2-4. Detection Rate: East Asian >99%. Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000396:2-8. Detection Rate: East Asian >99%. Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000288:1-10. Detection Rate: East Asian >99%. Salla Disease - Gene: SLC17A5. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_012434:1-11. Detection Rate: East Asian 98%. Segawa Syndrome - Gene: TH. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000360:1-13. Detection Rate: East Asian >99%. Short Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000017:1-10. Detection Rate: East Asian >99%. Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000382:1-10. Detection Rate: East Asian 97% Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001360:3-9. Detection Rate: East Asian >99% Spinal Muscular Atrophy - Gene: SMN1. Autosomal Recessive. Spinal Muscular Atrophy. Variant (1): SMN1 copy number. Detection Rate: East Asian 93%. Steroid-resistant Nephrotic Syndrome - Gene: NPHS2. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_014625:1-8. Detection Rate: East Asian >99%. Sulfate Transporter-related Osteochondrodysplasia - Gene: SLC26A2. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000112:2-3. Detection Rate: East Asian >99%. **TPP1-related Neuronal Ceroid Lipofuscinosis** - Gene: TPP1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000391:1-13. **Detection Rate**: East Asian >99%. Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000137:1-14. Detection Rate: East Asian >99%. Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_174878:1-3. Detection Rate: East Asian >99%. Very Long Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000018:1-20. Detection Rate: East Asian >99%. SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 MALE DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000053:1-21. Detection Rate: East Asian >99%. RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A ### Risk Calculations Below are the risk calculations for all conditions tested. Since negative results do not completely rule out the possibility of being a carrier, the **residual risk** represents the patient's post-test likelihood of being a carrier and the **reproductive risk** represents the likelihood the patient's future children could inherit each disease. These risks are inherent to all carrier screening tests, may vary by ethnicity, are predicated on a negative family history and are present even after a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. fIndicates a positive result. See the full clinical report for interpretation and details. | Disease | DONOR 12204
Residual Risk | Reproductive
Risk | |--|------------------------------|----------------------| | 21-hydroxylase-deficient Congenital Adrenal Hyperplasia | 1 in 590 | 1 in 170,000 | | ABCC8-related Hyperinsulinism | 1 in 11,000 | < 1 in 1,000,000 | | Alkaptonuria | 1 in 39,000 | < 1 in 1,000,000 | | Alpha Thalassemia | Alpha globin status: aa/aa. | Not calculated | | Alpha-1 Antitrypsin Deficiency | < 1 in 50,000 | < 1 in 1,000,000 | | Alpha-mannosidosis | 1 in 35,000 | < 1 in 1,000,000 | | Alpha-sarcoglycanopathy | 1 in 45,000 | < 1 in 1,000,000 | | Andermann Syndrome | < 1 in 50,000 | < 1 in 1,000,000 | | ARSACS | < 1 in 44,000 | < 1 in 1,000,000 | | Aspartylglycosaminuria | < 1 in 50,000 | < 1 in 1,000,000 | | Ataxia with Vitamin E Deficiency | < 1 in 50,000 | < 1 in 1,000,000 | | Ataxia-telangiectasia | 1 in 16,000 | < 1 in 1,000,000 | | Bardet-Biedl Syndrome, BBS1-related | 1 in 16,000 | < 1 in 1,000,000 | | Bardet-Biedl Syndrome, BBS10-related | 1 in 16,000 | < 1 in 1,000,000 | | Beta-sarcoglycanopathy | < 1 in 50,000 | < 1 in 1,000,000 | | Biotinidase Deficiency | 1 in 67,000 | < 1 in 1,000,000 | | Bloom Syndrome | < 1 in 50,000 | < 1 in 1,000,000 | | Canavan Disease | < 1 in 31,000 | < 1 in 1,000,000 | | Carnitine Palmitoyltransferase IA Deficiency | < 1 in 50,000 | < 1 in 1,000,000 | | Carnitine Palmitoyltransferase II Deficiency | < 1 in 50,000 | < 1 in 1,000,000 | | Cartilage-hair Hypoplasia | < 1 in 50,000 | < 1 in 1,000,000 | | Citrullinemia Type 1 | 1 in 860 | 1 in 410,000 | | CLN3-related Neuronal Ceroid Lipofuscinosis | 1 in 22,000 | < 1 in 1,000,000 | | CLN5-related Neuronal Ceroid Lipofuscinosis | < 1 in 50,000 | < 1 in 1,000,000 | | CNGB3-related Achromatopsia | 1 in 11,000 | < 1 in 1,000,000 | | Cohen Syndrome | < 1 in 15,000 | < 1 in 1,000,000 | | Congenital Disorder of Glycosylation Type Ia | 1 in 16,000 | < 1 in 1,000,000 | | Congenital Disorder of Glycosylation Type Ib | < 1 in 50,000 | < 1 in 1,000,000 | | Congenital Finnish Nephrosis | < 1 in 50,000 | < 1 in 1,000,000 | | Costeff Optic Atrophy Syndrome | < 1 in 50,000 | < 1 in 1,000,000 | | Cystic Fibrosis | 1 in 8,600 | < 1 in 1,000,000 | | Cystinosis | 1 in 22,000 | < 1 in 1,000,000 | | D-bifunctional Protein Deficiency | 1 in 9,000 | < 1 in 1,000,000 | | Dihydropyrimidine Dehydrogenase Deficiency | < 1 in 29,000 | < 1 in 1,000,000 | | Factor XI Deficiency | < 1 in 50,000 | < 1 in 1,000,000 | | Familial Dysautonomia | < 1 in 50,000 | < 1 in 1,000,000 | | Familial Mediterranean Fever | < 1 in 50,000 | < 1 in 1,000,000 | | Fanconi Anemia Type C | 1 in 16,000 | < 1 in 1,000,000 | | FKTN-related Disorders | 1 in 210 | 1 in 160,000 | | Galactosemia | < 1 in 50,000 | < 1 in 1,000,000 | | Gaucher Disease | 1 in 280 | 1 in 120,000 | | GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness Glutaric Acidemia Type 1 | 1 in 10,000 | < 1 in 1,000,000 | | Glycogen Storage Disease Type Ia | 1 in 10,000 | < 1 in 1,000,000 | | Glycogen Storage Disease Type Ib | 1 in 18,000 | < 1 in 1,000,000 | | Glycogen Storage Disease Type III | 1 in 35,000 | < 1 in 1,000,000 | | Glycogen Storage Disease Type V | 1 in 16,000 | < 1 in 1,000,000 | | GRACILE Syndrome | 1 in 16,000 | < 1 in 1,000,000 | | anneite syndrollie | < 1 in 50,000 | < 1 in 1,000,000 | SEATTLE SPERM BANK Attn: Dr. Jeffrey Olliffe NPI: 1306838271 Report Date: 08/22/2017 MALE DONOR 12204 DONOR 12204 DOB: Ethnicity: East Asian Barcode: 11004212187624 FEMALE N/A | | DOMOR 40004 | | |--|--|--------------------------------------| | Disease | DONOR 12204
Residual Risk | Reproductive
Risk | | HADHA-related Disorders | 1 in 15,000 | < 1 in 1,000,000 | | Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and
Sickle Cell Disease) | 1 in 4,300 | 1 in 740,000 | | Hereditary Fructose Intolerance | < 1 in 50,000 | < 1 in 1,000,000 | | Herlitz Junctional Epidermolysis Bullosa, LAMA3-related | < 1 in 50,000 | < 1 in 1,000,000 | | Herlitz Junctional Epidermolysis Bullosa, LAMB3-related | < 1 in 50,000 | < 1 in 1,000,000 | | Herlitz Junctional Epidermolysis Bullosa, LAMC2-related | < 1 in 50,000 | | | Hexosaminidase A Deficiency (Including Tay-Sachs Disease) | 1 in 30,000 | < 1 in 1,000,000
< 1 in 1,000,000 | | Homocystinuria Caused by Cystathionine Beta-synthase Deficiency | 1 in 25,000 | | | 181 SECTION OF THE SE | NM_000478.4(ALPL):c.407G>A(R136H, aka R119H) | < 1 in 1,000,000 | | Hypophosphatasia, Autosomal Recessive | heterozygote † | 1 in 630 | | Inclusion Body Myopathy 2 | < 1 in 50,000 | < 1 in 1,000,000 | | Isovaleric Acidemia | 1 in 25,000 | < 1 in 1,000,000 | | Joubert Syndrome 2 | < 1 in 50,000 | < 1 in 1,000,000 | | Krabbe Disease | 1 in 15,000 | < 1 in 1,000,000 | | Lipoamide Dehydrogenase Deficiency | < 1 in 50,000 | < 1 in 1,000,000 | | Maple Syrup Urine Disease Type 1B | 1 in 25,000 | < 1 in 1,000,000 | | Medium Chain Acyl-CoA Dehydrogenase Deficiency | 1 in 11,000 | < 1 in 1,000,000 | | Megalencephalic Leukoencephalopathy with Subcortical Cysts | < 1 in 50,000 | < 1 in 1,000,000 | | Metachromatic Leukodystrophy | 1 in 20,000 | < 1 in 1,000,000 | | Mucolipidosis IV | < 1 in 50,000 | < 1 in 1,000,000 | | Mucopolysaccharidosis Type I | 1 in 47,000 | < 1 in 1,000,000 | | Muscle-eye-brain Disease | < 1 in 12,000 | < 1 in 1,000,000 | | NEB-related Nemaline Myopathy | < 1 in 6,700 | < 1 in 1,000,000 | | Niemann-Pick Disease Type C | 1 in 19,000 | < 1 in 1,000,000 | | Niemann-Pick Disease, SMPD1-associated | 1 in 25,000 | < 1 in 1,000,000 | | Nijmegen Breakage Syndrome | 1 in 16,000 | < 1 in 1,000,000 | | Northern Epilepsy | < 1 in 50,000 | < 1 in 1,000,000 | | PCDH15-related Disorders | 1 in 5,300 | < 1 in 1,000,000 | | Pendred Syndrome | 1 in 7,000 | < 1 in 1,000,000 | | PEX1-related Zellweger Syndrome Spectrum | 1 in 35,000 | < 1 in 1,000,000 | | Phenylalanine Hydroxylase Deficiency | 1 in 5,000 | 1 in 990,000 | | PKHD1-related Autosomal Recessive Polycystic Kidney Disease | < 1 in 50,000 | < 1 in 1,000,000 | | Polyglandular Autoimmune Syndrome Type 1 | < 1 in 50,000 | < 1 in 1,000,000 | | Pompe Disease | 1 in 11,000 | < 1 in 1,000,000 | | PPT1-related Neuronal Ceroid Lipofuscinosis | < 1 in 50,000 | < 1 in 1,000,000 | | Primary Carnitine Deficiency | 1 in 12,000 | < 1 in 1,000,000 | | Primary Hyperoxaluria Type 1 | 1 in 35,000 | < 1 in 1,000,000 | | Primary Hyperoxaluria Type 2 | < 1 in 50,000 | < 1 in 1,000,000 | | PROP1-related Combined Pituitary Hormone Deficiency | 1 in 11,000 | < 1 in 1,000,000 | | Pseudocholinesterase Deficiency (Mild Condition) | 1 in 2,700 | 1 in 300,000 | | Pycnodysostosis Rhisamalia Chandrada da Lata Rayana A | < 1 in 50,000 | < 1 in 1,000,000 | | Rhizomelic Chondrodysplasia Punctata Type 1 | 1 in 16,000 | < 1 in 1,000,000 | | Salla Disease | < 1 in 30,000 | < 1 in 1,000,000 | | Segawa Syndrome | < 1 in 50,000 | < 1 in 1,000,000 | | Short Chain Acyl-CoA Dehydrogenase Deficiency | 1 in 16,000 | < 1 in 1,000,000 | | Sjogren-Larsson Syndrome | 1 in 9,100 | < 1 in 1,000,000 | | Smith-Lemli-Opitz Syndrome | < 1 in 50,000 | < 1 in 1,000,000 | | Spinal Muscular Atrophy | Negative for g.27134T>G SNP | | | Spirial Muscular Acrophy | SMN1: 2 copies | 1 in 150,000 | | Steroid-resistant Nephrotic Syndrome | 1 in 700 | | | Sulfate Transporter-related Osteochondrodysplasia | 1 in 40,000 | < 1 in 1,000,000 | | TPP1-related Neuronal Ceroid Lipofuscinosis | 1 in 11,000 | < 1 in 1,000,000 | | Tyrosinemia Type I | 1 in 30,000 | < 1 in 1,000,000 | | Usher Syndrome Type 3 | 1 in 17,000 | < 1 in 1,000,000 | | Very Long Chain Acyl-CoA Dehydrogenase Deficiency | < 1 in 50,000
1 in 8,800 | < 1 in 1,000,000 | | Wilson Disease | 1 in 5,000 | < 1 in 1,000,000 | | | 5,000 | 1 in 990,000 |