

RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Jeffrey Olliffe 4915 25th Ave NE Ste 204w Seattle, WA 98105-5668 Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 08/05/2019 MALE DONOR 12474 DOB: Ethnicity: Mixed or Other Caucasian Sample Type: EDTA Blood Date of Collection: 07/23/2019 Date Received: 07/25/2019 Date Tested: 07/30/2019 Barcode: 11004212718578 Accession ID: CSLXULAUM29GYM9 Indication: Egg or sperm donor FEMALE N/A

This is an **amended report**, from the 08/01/2019 original. Updated ethnicity.

Foresight® Carrier Screen

POSITIVE: CARRIER

ABOUT THIS TEST

The **Myriad Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	DONOR 12474	Partner
Panel Information	Foresight Carrier Screen Universal Panel Fundamental Plus Panel Fundamental Panel (175 conditions tested)	N/A
POSITIVE: CARRIER Tyrosinemia Type I Reproductive Risk: 1 in 630 Inheritance: Autosomal Recessive	CARRIER* NM_000137.2(FAH):c.1062+5G>A heterozygote	The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps".
POSITIVE: CARRIER ERCC6-related Disorders Reproductive Risk: 1 in 1,500 Inheritance: Autosomal Recessive	CARRIER* NM_000124.2(ERCC6):c.3465delC (Y1155*) heterozygote [†]	The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps".

†Likely to have a negative impact on gene function. *Carriers generally do not experience symptoms.

No disease-causing mutations were detected in any other gene tested. A complete list of all conditions tested can be found on page 8.

CLINICAL NOTES

None

NEXT STEPS

- Carrier testing should be considered for the diseases specified above for the patient's partner, as both parents must be carriers before a child is at high risk of developing the disease.
- Genetic counseling is recommended and patients may wish to discuss any positive results with blood relatives, as there is an increased chance that they are also carriers.

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

positive: carrier Tyrosinemia Type I

Gene: FAH | Inheritance Pattern: Autosomal Recessive

Reproductive risk: 1 in 630

FEMALE

N/A

Risk before testing: 1 in 100,000

Patient	DONOR 12474	No partner tested
Result	Carrier	N/A
Variant(s)	NM_000137.2(FAH):c.1062+5G>A heterozygote	N/A
Methodology	Sequencing with copy number analysis	N/A
Interpretation	This individual is a carrier of tyrosinemia type I. Carriers generally do not experience symptoms.	N/A
Detection rate	>99%	N/A
Exons tested	NM_000137:1-14.	N/A

What Is Tyrosinemia Type I?

Tyrosinemia type I is an inherited metabolic disorder in which the body lacks an enzyme needed to break down the amino acid tyrosine, an important building block of proteins. The deficiency in this enzyme, called fumarylacetoacetate hydrolase, leads to an accumulation of tyrosine and related substances in the body which can result in damage to tissues and organs. Tyrosinemia type I is caused by mutations in the *FAH* gene.

Symptoms of the condition begin within the first few months of life and can include diarrhea, vomiting, an enlarged liver, failure to grow at a normal rate, yellowing of the skin and whites of the eyes (jaundice), a softening of the bones, irritability, and an odor like boiled cabbage or rotten mushrooms. Tyrosine can also build up in the cornea, causing itchy, irritated eyes. The liver is progressively damaged, as are the kidneys and central nervous system. If left untreated, children with tyrosinemia type I may have episodes of abdominal pain, an altered mental state, pain or numbness in the extremities, and/or respiratory failure. A mechanical ventilator may be necessary for episodes of respiratory failure, which often last between one and seven days.

How Common Is Tyrosinemia Type I?

Tyrosinemia type I affects 1 in 100,000 to 120,000 individuals worldwide. It is more common in Norway and Finland, where it affects 1 in 60,000 births and in Quebec, Canada, where it affects 1 in 16,000 individuals. In the Saguenay-Lac-Saint-Jean region of Quebec, the disease has a much higher frequency, affecting 1 in every 1,846 individuals.

How Is Tyrosinemia Type I Treated?

The drug nitisinone was FDA approved in 2002 to treat tyrosinemia type I. It prevents an accumulation of specific metabolic compounds in individuals with the disease and is typically taken as soon as the disease is diagnosed. The earlier the disease is recognized and treated, the less damage is done to the body and the better the prognosis. It is important that individuals with tyrosinemia type I manage their diets closely in a prescribed manner to control intakes of tyrosine and another amino acid, phenylalanine. Daily nitisinone intake and careful diet monitoring will be necessary throughout the life of someone with tyrosinemia type I. Failure to comply with recommended treatments may result in the return of severe, potentially fatal symptoms and damage to the body.

MALE DONOR 12474 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

FEMALE

N/A

Liver transplantation is an option in severe cases where an individual cannot take nitisinone or already has cancerous cells in the liver. This procedure does carry serious risks. Prior to the development of nitisinone, liver transplantation was the only treatment for tyrosinemia type I.

What Is the Prognosis for an Individual with Tyrosinemia Type I?

If not recognized and promptly treated, tyrosinemia type I is usually fatal before the age of 10 often due to liver or kidney failure, a neurological crisis, or hepatocellular carcinoma, a type of liver cancer. Some children may die within weeks of experiencing the first symptoms. However, with treatment and a managed diet, 90% of individuals with the disease will live to adulthood and experience fairly normal lives.

MALE DONOR 12474 DOB: Contemposities Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578 FEMALE N/A

POSITIVE: CARRIER ERCC6-related Disorders

Gene: ERCC6 | Inheritance Pattern: Autosomal Recessive

Reproductive risk: 1 in 1,500

Risk before testing: 1 in 570,000

Patient	DONOR 12474	No partner tested
Result	Carrier	N/A
Variant(s)	NM_000124.2(ERCC6):c.3465delC(Y1155*) heterozygote [†]	N/A
Methodology	Sequencing with copy number analysis	N/A
Interpretation	This individual is a carrier of ERCC6-related disorders. Carriers generally do not experience symptoms.	N/A
Detection rate	99%	N/A
Exons tested	NM_000124:2-21.	N/A

†Likely to have a negative impact on gene function.

What are ERCC6-related Disorders?

ERCC6-related disorders are more commonly known as Cockayne syndrome type B, an inherited disorder characterized by severe growth delay, a small head size, developmental delays, and intellectual disabilities. Other common features of the condition include an increased sensitivity to sunlight (photosensitivity), significant tooth decay, vision problems, and hearing loss. In addition, affected individuals may have certain facial features such a small chin, large ears, and a slender nose, which may make them appear older than their actual age.

ERCC6-related disorders are sometimes divided into three forms called Cockayne syndrome type I, Cockayne syndrome type II, and Cockayne syndrome type III. These forms differ in the age at which symptoms first appear and how fast the symptoms progress. However, the three forms are not completely distinct, with some patients having features consistent with more than one type.

Cockayne syndrome type I is the most common type of ERCC6-related disorder. Newborns with this type generally appear normal. However, their growth slows considerably within the first two years of life. With time, their length, weight, and head size are all significantly less than expected for their age. Affected children also develop vision and hearing problems that worsen over time, as well as neurological problems such as increased muscle tone, difficulty walking, tremors, seizures, feeding difficulties, and behavioral issues. Other possible symptoms include (but are not limited to) cataracts, frequent cavities, dry skin and hair, bone problems, and changes in the brain that can be seen on brain imaging.

Cockayne syndrome type II (sometimes called cerebro-oculo-facio-skeletal [COFS] syndrome or Pena-Shokeir syndrome type II) is the most severe form of the disease, with signs and symptoms appearing at birth or in the newborn period. Infants are small at birth and often have cataracts or other eye abnormalities (such as small corneas). With time, they continue to have significant problems with growth and severe developmental delays. Affected children are typically unable to speak and cannot sit or walk independently.

Cockayne syndrome type III is the mildest form of the condition, with symptoms appearing later in childhood. While affected children with this type have some of the features associated with Cockayne syndrome types I and II, their growth deficiency and developmental delays are not as severe.

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578 FEMALE N/A

How common are ERCC6-related Disorders?

It has been estimated that Cockayne syndrome affects approximately 1 in 200,000 Europeans each year. *ERCC6* accounts for 65% of individuals affected with Cockayne syndrome. Studies have also suggested that the condition may be more common in certain populations (such as the Druze population in Northern Israel) and that certain recurring *ERCC6* gene changes may be more common in individuals from Reunion Island and in some individuals of French or British ancestry.

How are ERCC6-related Disorders treated?

There is no cure for ERCC6-related disorders. Treatment is focused on managing the symptoms of the condition. This may include medication for muscle stiffness, tremors, or seizures, physical therapy or assistive devices for mobility issues, educational programs for intellectual disabilities, feeding tubes for those with significant feeding difficulties, hearing aids for those with hearing loss, and standard therapies for the treatment of cataracts or other vision problems. In addition, aggressive dental care will help minimize the risk of cavities and sun protection is necessary for managing photosensitivity, although exposure to excessive sunlight should be avoided. Metronidazole (a type of antibiotic) should also be avoided, as use of this medication can cause liver failure in individuals with Cockayne syndrome.

What is the prognosis for a person with an ERCC6-related Disorder?

The prognosis for ERCC6-related disorders varies depending on the type of Cockayne syndrome. Most individuals with Cockayne syndrome type I die by the age of 20, with an average age at death of 12 years. However, survival past the age of 20 has been reported. For those with Cockayne syndrome type II, the most severe form of the condition, death by age 7 is typical. The average life expectancy for those with Cockayne syndrome type III is not currently known.

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578 FEMALE N/A

Methods and Limitations

DONOR 12474 [Foresight Carrier Screen]: Sequencing with copy number analysis, spinal muscular atrophy, and analysis of homologous regions.

Sequencing with copy number analysis

High-throughput sequencing and read depth-based copy number analysis are used to analyze the listed exons, as well as selected intergenic and intronic regions, of the genes in the Conditions Tested section of the report. The region of interest (ROI) of the test comprises these regions, in addition to the 20 intronic bases flanking each exon. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to high coverage and the sequences are compared to standards and references of normal variation. More than 99% of all bases in the ROI are sequenced at greater than the minimum read depth. Mutations may not be detected in areas of lower sequence coverage. Small insertions and deletions may not be as accurately determined as single nucleotide variants. Genes that have closely related pseudogenes may be addressed by a different method. *CFTR* and *DMD* testing includes analysis for both large (exon-level) deletions and duplications with an average sensitivity of 99%, while other genes are only analyzed for large deletions with a sensitivity of >75%. However, the sensitivity may be higher for selected founder deletions. The breakpoints of copy number variants and exons affected are estimated from probe positions. Only exons known to be included in the copy number variant are provided in the name. In some cases, the copy number variant may be larger or smaller than indicated. If *G/B2* is tested, two large upstream deletions which overlap *G/B6* and affect the expression of *G/B2*, del(*G/B6*-D13S1854), are also analyzed. Mosaicism or somatic variants present at low levels may not be detected. If detected, these may not be reported.

Detection rates are determined by using literature to estimate the fraction of disease alleles, weighted by frequency, that the methodology is unable to detect. Detection rates only account for analytical sensitivity and certain variants that have been previously described in the literature may not be reported if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease-specific rates of de novo mutations.

All variants that are a recognized cause of the disease will be reported. In addition, variants that have not previously been established as a recognized cause of disease may be identified. In these cases, only variants classified as "likely" pathogenic are reported. Likely pathogenic variants are described elsewhere in the report as "likely to have a negative impact on gene function". Likely pathogenic variants are evaluated and classified by assessing the nature of the variant and reviewing reports of allele frequencies in cases and controls, functional studies, variant annotation and effect prediction, and segregation studies. Exon level duplications are assumed to be in tandem and are classified according to their predicted effect on the reading frame. Benign variants, variants of uncertain significance, and variants not directly associated with the intended disease phenotype are not reported. Curation summaries of reported variants are available upon request.

Spinal muscular atrophy

Targeted copy number analysis is used to determine the copy number of exon 7 of the *SMN1* gene relative to other genes. Other mutations may interfere with this analysis. Some individuals with two copies of *SMN1* are carriers with two *SMN1* genes on one chromosome and a *SMN1* deletion on the other chromosome. This is more likely in individuals who have 2 copies of the *SMN1* gene and are positive for the g.27134T>G SNP, which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have 2 copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss of function mutations in certain genes that have homology to other regions. The precise breakpoints of large deletions in these genes cannot be determined, but are estimated from copy number analysis. High numbers of pseudogene copies may interfere with this analysis.

If *CYP21A2* is tested, patients who have one or more additional copies of the *CYP21A2* gene and a loss of function mutation may not actually be a carrier of 21-hydroxylase-deficient congenital adrenal hyperplasia (CAH). Because the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are only based on published incidences for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate of overall chances for 21-hydroxylase-deficient CAH, especially in the aforementioned populations, as they do not account for non-classic CAH. If *HBA11HBA2* are tested, some individuals with four alpha globin genes may be carriers, with three genes on one chromosome and a deletion on the other chromosome. This and similar, but rare, carrier states, where complementary changes exist in both the gene and a pseudogene, may not be detected by the assay.

MALE DONOR 12474 DOB: Hereit Caucasian Barcode: 11004212718578

FEMALE N/A

Limitations

In an unknown number of cases, nearby genetic variants may interfere with mutation detection. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions and technical errors. This test is designed to detect and report germline alterations. While somatic variants present at low levels may be detected, these may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes. The test does not fully address all inherited forms of intellectual disability, birth defects and genetic disease. A family history of any of these conditions may warrant additional evaluation. Furthermore, not all mutations will be identified in the genes analyzed and additional testing may be beneficial for some patients. For example, individuals of African, Southeast Asian, and Mediterranean ancestry are at increased risk for being carriers for hemoglobinopathies, which can be identified by CBC and hemoglobin electrophoresis or HPLC (*ACOG Practice Bulletin No. 78. Obstet.Gynecol. 2007;109:229-37*).

This test was developed and its performance characteristics determined by Myriad Women's Health, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: **#05D1102604**.

Resources

GENOME CONNECT | http://www.genomeconnect.org

Patients can share their reports via research registries such as Genome Connect, an online research registry working to build the knowledge base about genetics and health. Genome Connect provides patients, physicians, and researchers an opportunity to share genetic information to support the study of the impact of genetic variation on health conditions.

SENIOR LABORATORY DIRECTOR

Salk 5

Jack Ji, PhD, FACMG

Report content approved by Jack Ji, PhD, FACMG on Aug 6, 2019

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

Conditions Tested

11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia - Gene: CYP11B1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:**

NM_000497:1-9. Detection Rate: Mixed or Other Caucasian 94%.

6-pyruvoyl-tetrahydropterin Synthase Deficiency - Gene: PTS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000317:1-6. Detection Rate: Mixed or Other Caucasian >99%.

ABCC8-related Familial Hyperinsulinism - **Gene:** ABCC8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000352:1-39. **Detection Rate:** Mixed or Other Caucasian >99%.

Adenosine Deaminase Deficiency - Gene: ADA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000022:1-12. Detection Rate: Mixed or Other Caucasian >99%.

Alpha Thalassemia - Genes: HBA1, HBA2. Autosomal Recessive. Analysis of homologous regions. Variants (13): -(alpha)20.5, --BRIT, --MEDI, --MEDI, --SEA, --THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, anti3.7, anti4.2, del HS-40. Detection Rate: Unknown due to rarity of disease.

Alpha-mannosidosis - Gene: MAN2B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000528:1-23. Detection Rate: Mixed or Other Caucasian >99%.

Alpha-sarcoglycanopathy - **Gene:** SGCA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000023:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Alstrom Syndrome - Gene: ALMS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015120:1-23. Detection Rate: Mixed or Other Caucasian >99%.

AMT-related Glycine Encephalopathy - Gene: AMT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000481:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Andermann Syndrome - Gene: SLC12A6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133647:1-25. Detection Rate: Mixed or Other Caucasian >99%.

Argininemia - Gene: ARG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000045:1-8. Detection Rate: Mixed or Other Caucasian 97%. Argininosuccinic Aciduria - Gene: ASL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001024943:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Aspartylglucosaminuria - Gene: AGA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000027:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000370:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000051:2-63. Detection Rate: Mixed or Other Caucasian 98%.

ATP7A-related Disorders - Gene: ATP7A. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000052:2-23. Detection Rate: Mixed or Other Caucasian 96%.

Autoimmune Polyglandular Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000383:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Autosomal Recessive Osteopetrosis Type 1 - Gene: TCIRG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006019:2-20. Detection Rate: Mixed or Other Caucasian >99%.

Autosomal Recessive Polycystic Kidney Disease, PKHD1-related - Gene: PKHD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138694:2-67. Detection Rate: Mixed or Other Caucasian >99%.

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay - Gene: SACS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014363:2-10. Detection Rate: Mixed or Other Caucasian 99%.

Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024649:1-17. Detection Rate: Mixed or Other Caucasian >99%. **Bardet-Biedl Syndrome, BBS10-related** - Gene: BBS10. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024685:1-2. Detection Rate: Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS12-related - Gene: BBS12. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_152618:2. Detection Rate: Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS2-related - Gene: BBS2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_031885:1-17. **Detection Rate:** Mixed or Other Caucasian >99%.

BCS1L-related Disorders - Gene: BCS1L. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004328:3-9. Detection Rate: Mixed or Other Caucasian >99%.

Beta-sarcoglycanopathy - **Gene:** SGCB. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000232:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Biotinidase Deficiency - Gene: BTD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000060:1-4. Detection Rate: Mixed or Other Caucasian >99%.

Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000057:2-22. Detection Rate: Mixed or Other Caucasian >99%.

Calpainopathy - Gene: CAPN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000070:1-24. Detection Rate: Mixed or Other Caucasian >99%. Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000049:1-6. Detection Rate: Mixed or Other Caucasian 98%.

Carbamoylphosphate Synthetase I Deficiency - Gene: CPS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001875:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001876:2-19. Detection Rate: Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000098:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NR_003051:1. Detection Rate: Mixed or Other Caucasian >99%.

Cerebrotendinous Xanthomatosis - **Gene:** CYP27A1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000784:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000050:3-16. Detection Rate: Mixed or Other Caucasian >99%.

CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001042432:2-16. Detection Rate: Mixed or Other Caucasian >99%.

CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006493:1-4. Detection Rate: Mixed or Other Caucasian >99%.

CLN6-related Neuronal Ceroid Lipofuscinosis - Gene: CLN6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017882:1-7. Detection Rate: Mixed or Other Caucasian >99%.

CLN8-related Neuronal Ceroid Lipofuscinosis - Gene: CLN8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_018941:2-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Cohen Syndrome - **Gene:** VPS13B. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017890:2-62. **Detection Rate:** Mixed or Other Caucasian 97%.

COL4A3-related Alport Syndrome - **Gene:** COL4A3. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000091:1-52. **Detection Rate:** Mixed or Other Caucasian 97%.

COL4A4-related Alport Syndrome - **Gene**: COL4A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000092:2-48. **Detection Rate:** Mixed or Other Caucasian 98%.

FEMALE N/A

Combined Pituitary Hormone Deficiency, PROP1-related - Gene: PROP1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_006261:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Congenital Adrenal Hyperplasia, CYP21A2-related - Gene: CYP21A2. Autosomal Recessive. Analysis of homologous regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V281L, [I237N;V238E;M240K], c.293-13C>G. Detection Rate: Mixed or Other Caucasian 96%.

Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000303:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Disorder of Glycosylation Type Ic - **Gene:** ALG6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_013339:2-15. **Detection Rate:** Mixed or Other Caucasian >99%.

Congenital Disorder of Glycosylation, MPI-related - Gene: MPI. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002435:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_025136:1-2. **Detection Rate:** Mixed or Other Caucasian >99%.

Cystic Fibrosis - Gene: CFTR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. Detection Rate: Mixed or Other Caucasian >99%. Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004937:3-12. Detection Rate: Mixed or Other Caucasian >99%. D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000414:1-24. Detection Rate: Mixed or Other Caucasian 98%.

Delta-sarcoglycanopathy - **Gene:** SGCD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000337:2-9. **Detection Rate:** Mixed or Other Caucasian 99%.

Dihydrolipoamide Dehydrogenase Deficiency - **Gene:** DLD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000108:1-14. **Detection Rate:** Mixed or Other Caucasian >99%.

Dysferlinopathy - Gene: DYSF. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003494:1-55. Detection Rate: Mixed or Other Caucasian 98%. Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) - Gene: DMD. X-linked Recessive. Sequencing with copy number analysis. Exons: NM 004006:1-79. Detection Rate: Mixed or Other Caucasian >99%.

ERCC6-related Disorders - **Gene:** ERCC6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000124:2-21. **Detection Rate:** Mixed or Other Caucasian 99%.

ERCC8-related Disorders - **Gene:** ERCC8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000082:1-12. **Detection Rate:** Mixed or Other Caucasian 95%.

EVC-related Ellis-van Creveld Syndrome - Gene: EVC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153717:1-21. **Detection Rate:** Mixed or Other Caucasian 96%.

EVC2-related Ellis-van Creveld Syndrome - Gene: EVC2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_147127:1-22. **Detection Rate:** Mixed or Other Caucasian >99%.

Fabry Disease - Gene: GLA. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000169:1-7. Detection Rate: Mixed or Other Caucasian 98%. Familial Dysautonomia - Gene: IKBKAP. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003640:2-37. Detection Rate: Mixed or Other Caucasian >99%.

Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000243:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Fanconi Anemia Complementation Group A - Gene: FANCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000135:1-43. Detection Rate: Mixed or Other Caucasian 92%.

Fanconi Anemia, FANCC-related - Gene: FANCC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000136:2-15. Detection Rate: Mixed or Other Caucasian >99%.

FKRP-related Disorders - **Gene:** FKRP. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_024301:4. **Detection Rate:** Mixed or Other Caucasian >99%.

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

FKTN-related Disorders - **Gene:** FKTN. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001079802:3-11. **Detection Rate:** Mixed or Other Caucasian >99%.

Galactokinase Deficiency - Gene: GALK1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000154:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Galactosemia - Gene: GALT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000155:1-11. Detection Rate: Mixed or Other Caucasian >99%. Gamma-sarcoglycanopathy - Gene: SGCG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000231:2-8. Detection Rate: Mixed or Other Caucasian 88%.

Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of homologous regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: Mixed or Other Caucasian 60%. GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness - Gene: GJB2.

Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004004:1-2. **Detection Rate:** Mixed or Other Caucasian >99%.

GLB1-related Disorders - Gene: GLB1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000404:1-16. **Detection Rate:** Mixed or Other Caucasian >99%.

GLDC-related Glycine Encephalopathy - **Gene:** GLDC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000170:1-25. **Detection Rate:** Mixed or Other Caucasian 94%.

Glutaric Acidemia, GCDH-related - **Gene:** GCDH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000159:2-12. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycogen Storage Disease Type Ia - **Gene:** G6PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000151:1-5. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycogen Storage Disease Type Ib - **Gene:** SLC37A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001164277:3-11. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycogen Storage Disease Type III - Gene: AGL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000642:2-34. Detection Rate: Mixed or Other Caucasian >99%.

GNE Myopathy - Gene: GNE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001128227:1-12. Detection Rate: Mixed or Other Caucasian >99%.

GNPTAB-related Disorders - Gene: GNPTAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024312:1-21. Detection Rate: Mixed or Other Caucasian >99%.

HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000182:1-20. Detection Rate: Mixed or Other Caucasian >99%.

Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000518:1-3. Detection Rate: Mixed or Other Caucasian >99%.

Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000035:2-9. Detection Rate: Mixed or Other Caucasian >99%.

Herlitz Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM 000228:2-23. Detection Rate: Mixed or Other Caucasian >99%.

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000520:1-14. Detection Rate: Mixed or Other Caucasian >99%.

HMG-CoA Lyase Deficiency - Gene: HMGCL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000191:1-9. Detection Rate: Mixed or Other Caucasian 98%.

Holocarboxylase Synthetase Deficiency - Gene: HLCS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000411:4-12. Detection Rate: Mixed or Other Caucasian >99%.

Homocystinuria, CBS-related - Gene: CBS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000071:3-17. Detection Rate: Mixed or Other Caucasian >99%.

Hydrolethalus Syndrome - **Gene:** HYLS1. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_145014:4. **Detection Rate:** Mixed or Other Caucasian >99%.

Hypophosphatasia - Gene: ALPL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000478:2-12. Detection Rate: Mixed or Other Caucasian >99%.

Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002225:1-12. Detection Rate: Mixed or Other Caucasian >99%.

Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001173990:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000227:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005562:1-23. Detection Rate: Mixed or Other Caucasian >99%.

KCNJ11-related Familial Hyperinsulinism - Gene: KCNJ11. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000525:1. Detection Rate: Mixed or Other Caucasian >99%.

Krabbe Disease - Gene: GALC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000153:1-17. Detection Rate: Mixed or Other Caucasian >99%. LAMA2-related Muscular Dystrophy - Gene: LAMA2. Autosomal Recessive.

Sequencing with copy number analysis. **Exons:** NM_000426:1-65. **Detection Rate:** Mixed or Other Caucasian >99%.

Leigh Syndrome, French-Canadian Type - Gene: LRPPRC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133259:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Lipoid Congenital Adrenal Hyperplasia - Gene: STAR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000349:1-7. Detection Rate: Mixed or Other Caucasian >99%.

Lysosomal Acid Lipase Deficiency - Gene: LIPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000235:2-10. Detection Rate: Mixed or Other Caucasian >99%.

Maple Syrup Urine Disease Type Ia - Gene: BCKDHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000709:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Maple Syrup Urine Disease Type Ib - Gene: BCKDHB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_183050:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Maple Syrup Urine Disease Type II - Gene: DBT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001918:1-11. Detection Rate: Mixed or Other Caucasian 96%.

Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000016:1-12. Detection Rate: Mixed or Other Caucasian >99%.

Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_015166:2-12. **Detection Rate**: Mixed or Other Caucasian >99%.

Metachromatic Leukodystrophy - Gene: ARSA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000487:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, cblA Type - Gene: MMAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_172250:2-7. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, cblB Type - Gene: MMAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_052845:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Aciduria and Homocystinuria, cblC Type - Gene: MMACHC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015506:1-4. Detection Rate: Mixed or Other Caucasian >99%.

MKS1-related Disorders - Gene: MKS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017777:1-18. Detection Rate: Mixed or Other Caucasian >99%.

Mucolipidosis III Gamma - Gene: GNPTG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032520:1-11. Detection Rate: Mixed or Other Caucasian >99%.

Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_020533:1-14. Detection Rate: Mixed or Other Caucasian >99%.

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000203:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type II - Gene: IDS. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000202:1-9. Detection Rate: Mixed or Other Caucasian 88%.

Mucopolysaccharidosis Type IIIA - Gene: SGSH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000199:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type IIIB - Gene: NAGLU. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000263:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type IIIC - Gene: HGSNAT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_152419:1-18. **Detection Rate:** Mixed or Other Caucasian >99%.

MUT-related Methylmalonic Acidemia - Gene: MUT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000255:2-13. Detection Rate: Mixed or Other Caucasian >99%.

MYO7A-related Disorders - Gene: MYO7A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000260:2-49. Detection Rate: Mixed or Other Caucasian >99%.

NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001271208:3-80,117-183. Detection Rate: Mixed or Other Caucasian 92%.

Nephrotic Syndrome, NPHS1-related - Gene: NPHS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004646:1-29. **Detection Rate:** Mixed or Other Caucasian >99%.

Nephrotic Syndrome, NPHS2-related - Gene: NPHS2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014625:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C1 - Gene: NPC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000271:1-25. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C2 - Gene: NPC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006432:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease, SMPD1-related - Gene: SMPD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000543:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002485:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Ornithine Transcarbamylase Deficiency - **Gene**: OTC. X-linked Recessive. Sequencing with copy number analysis. **Exons:** NM_000531:1-10. **Detection Rate:** Mixed or Other Caucasian 97%.

PCCA-related Propionic Acidemia - Gene: PCCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000282:1-24. Detection Rate: Mixed or Other Caucasian 95%.

PCCB-related Propionic Acidemia - Gene: PCCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000532:1-15. Detection Rate: Mixed or Other Caucasian >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_033056:2-33. Detection Rate: Mixed or Other Caucasian 93%.

Pendred Syndrome - Gene: SLC26A4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000441:2-21. Detection Rate: Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 1 - Gene: PEX1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000466:1-24. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 3 - **Gene:** PEX12. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000286:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 4 - Gene: PEX6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000287:1-17. **Detection Rate:** Mixed or Other Caucasian 97%.

Peroxisome Biogenesis Disorder Type 5 - Gene: PEX2. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_000318:4. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 6 - **Gene:** PEX10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153818:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Phenylalanine Hydroxylase Deficiency - **Gene:** PAH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000277:1-13. **Detection Rate:** Mixed or Other Caucasian >99%.

POMGNT-related Disorders - Gene: POMGNT1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017739:2-22. **Detection Rate:** Mixed or Other Caucasian 96%.

Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000152:2-20. Detection Rate: Mixed or Other Caucasian 98%. PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000310:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Primary Carnitine Deficiency - Gene: SLC22A5. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_003060:1-10. **Detection Rate:** Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000030:1-11. Detection Rate: Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 2 - Gene: GRHPR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012203:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 3 - Gene: HOGA1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_138413:1-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000396:2-8. **Detection Rate:** Mixed or Other Caucasian >99%.

Pyruvate Carboxylase Deficiency - Gene: PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000920:3-22. **Detection Rate:** Mixed or Other Caucasian >99%.

Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000288:1-10. Detection Rate: Mixed or Other Caucasian >99%.

RTEL1-related Disorders - Gene: RTEL1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032957:2-35. Detection Rate: Mixed or Other Caucasian >99%.

Salla Disease - Gene: SLC17A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012434:1-11. Detection Rate: Mixed or Other Caucasian 98%. Sandhoff Disease - Gene: HEXB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000521:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Short-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000017:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000382:1-10. Detection Rate: Mixed or Other Caucasian 96%.

SLC26A2-related Disorders - Gene: SLC26A2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000112:2-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001360:3-9. Detection Rate: Mixed or Other Caucasian >99%.

Spastic Paraplegia Type 15 - Gene: ZFYVE26. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015346:2-42. Detection Rate: Mixed or Other Caucasian >99%.

Spinal Muscular Atrophy - **Gene:** SMN1. Autosomal Recessive. Spinal muscular atrophy. **Variant (1):** SMN1 copy number. **Detection Rate:** Mixed or Other Caucasian 95%.

MALE DONOR 12474 DOB: Contemposities Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

Spondylothoracic Dysostosis - Gene: MESP2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001039958:1-2. Detection Rate: Mixed or Other Caucasian >99%.

FEMALE

N/A

TGM1-related Autosomal Recessive Congenital Ichthyosis - Gene: TGM1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000359:2-15. Detection Rate: Mixed or Other Caucasian >99%.

TPP1-related Neuronal Ceroid Lipofuscinosis - Gene: TPP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000391:1-13. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosine Hydroxylase Deficiency - Gene: TH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_199292:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000137:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosinemia Type II - Gene: TAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000353:2-12. Detection Rate: Mixed or Other Caucasian >99%.

USH1C-related Disorders - **Gene:** USH1C. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_005709:1-21. **Detection Rate:** Mixed or Other Caucasian >99%.

USH2A-related Disorders - Gene: USH2A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_206933:2-72. Detection Rate: Mixed or Other Caucasian 94%.

Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_174878:1-3. Detection Rate: Mixed or Other Caucasian >99%.

Very-long-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000018:1-20. Detection Rate: Mixed or Other Caucasian >99%.

Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000053:1-21. Detection Rate: Mixed or Other Caucasian >99%. X-linked Adrenoleukodystrophy - Gene: ABCD1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000033:1-6. Detection Rate: Mixed or Other Caucasian 77%.

X-linked Alport Syndrome - Gene: COL4A5. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000495:1-51. Detection Rate: Mixed or Other Caucasian 95%.

X-linked Congenital Adrenal Hypoplasia - Gene: NR0B1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000475:1-2. Detection Rate: Mixed or Other Caucasian 99%.

X-linked Juvenile Retinoschisis - Gene: RS1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000330:1-6. Detection Rate: Mixed or Other Caucasian 98%.

X-linked Myotubular Myopathy - Gene: MTM1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000252:2-15. Detection Rate: Mixed or Other Caucasian 98%.

X-linked Severe Combined Immunodeficiency - Gene: IL2RG. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000206:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group A - Gene: XPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000380:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group C - Gene: XPC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004628:1-16. Detection Rate: Mixed or Other Caucasian 97%.

Counsyl is a trademark of Myriad Women's Health, Inc. Copyright 2019 Myriad Women's Health, Inc. All rights reserved.

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

FEMALE N/A

Risk Calculations

Below are the risk calculations for all conditions tested. Since negative results do not completely rule out the possibility of being a carrier, the **residual risk** represents the patient's post-test likelihood of being a carrier and the **reproductive risk** represents the likelihood the patient's future children could inherit each disease. These risks are inherent to all carrier screening tests, may vary by ethnicity, are predicated on a negative family history and are present even after a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

†Indicates a positive result. See the full clinical report for interpretation and details.

Disease	DONOR 12474 Residual Risk	Reproductive Risk
11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia	1 in 3,800	< 1 in 1,000,000
6-pyruvoyl-tetrahydropterin Synthase Deficiency	< 1 in 50,000	< 1 in 1,000,000
ABCC8-related Familial Hyperinsulinism	1 in 17,000	< 1 in 1,000,000
Adenosine Deaminase Deficiency	1 in 22,000	< 1 in 1,000,000
Alpha Thalassemia	Alpha globin status: aa/aa.	Not calculated
Alpha-mannosidosis	1 in 35,000	< 1 in 1,000,000
Alpha-sarcoglycanopathy	1 in 45,000	< 1 in 1,000,000
Alstrom Syndrome	< 1 in 50,000	< 1 in 1,000,000
AMT-related Glycine Encephalopathy	1 in 22,000	< 1 in 1,000,000
Andermann Syndrome	< 1 in 50,000	< 1 in 1,000,000
Argininemia	< 1 in 17,000	< 1 in 1,000,000
Argininosuccinic Aciduria	1 in 13,000	< 1 in 1,000,000
Aspartylglucosaminuria	< 1 in 50,000	< 1 in 1,000,000
Ataxia with Vitamin E Deficiency	<pre>< 1 in 50,000</pre>	< 1 in 1,000,000 <
Ataxia-telangiectasia	1 in 11,000	< 1 in 1,000,000 < 1 in 1,000,000
ATP7A-related Disorders	<pre>< 1 in 1,000,000</pre>	1 in 600,000
Autoimmune Polyglandular Syndrome Type 1	1 in 15,000	< 1 in 1,000,000 < 1 in 1,000,000
Autosomal Recessive Osteopetrosis Type 1	1 in 35,000	< 1 in 1,000,000 < 1 in 1,000,000
Autosomal Recessive Polycystic Kidney Disease, PKHD1-related	1 in 8,100	< 1 in 1,000,000 < 1 in 1,000,000
Autosomal Recessive Polycystic Runey Disease, PRHD Prelated	<pre>< 1 in 44,000</pre>	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS1-related	1 in 32,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS10-related	1 in 42,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS12-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS2-related	< 1 in 50,000	< 1 in 1,000,000
BCS1L-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Beta-sarcoglycanopathy	1 in 39,000	< 1 in 1,000,000
Biotinidase Deficiency	1 in 13,000	1 in 650,000
Bloom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Calpainopathy	1 in 13,000	< 1 in 1,000,000
Canavan Disease	1 in 9,700	< 1 in 1,000,000
Carbamoylphosphate Synthetase I Deficiency	< 1 in 57,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase IA Deficiency	< 1 in 50,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase II Deficiency	1 in 25,000	< 1 in 1,000,000
Cartilage-hair Hypoplasia	< 1 in 50,000	< 1 in 1,000,000
Cerebrotendinous Xanthomatosis	1 in 11,000	< 1 in 1,000,000
Citrullinemia Type 1	1 in 14,000	< 1 in 1,000,000
CLN3-related Neuronal Ceroid Lipofuscinosis	1 in 8,600	< 1 in 1,000,000
CLN5-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN6-related Neuronal Ceroid Lipofuscinosis	1 in 43,000	< 1 in 1,000,000
CLN8-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
Cohen Syndrome	< 1 in 15,000	< 1 in 1,000,000
COL4A3-related Alport Syndrome	1 in 6,200	< 1 in 1,000,000
COL4A4-related Alport Syndrome	1 in 12,000	< 1 in 1,000,000
Combined Pituitary Hormone Deficiency, PROP1-related	1 in 6,100	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP21A2-related	1 in 1,300	1 in 280,000
Congenital Disorder of Glycosylation Type Ia	1 in 16,000	<pre><1 in 1,000,000</pre>
Congenital Disorder of Glycosylation Type Ic	<pre>< 1 in 50,000</pre>	< 1 in 1,000,000 <
Congenital Disorder of Glycosylation, MPI-related	< 1 in 50,000	< 1 in 1,000,000 <

Disease

RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Jeffrey Olliffe NPI: 1306838271 Report Date: 08/05/2019

MALE **DONOR 12474** DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578

DONOR 12474

Residual Risk

< 1 in 50.000

FEMALE N/A

Reproductive

< 1 in 1,000,000

Risk

Costeff Optic Atrophy Syndrome Cystic Fibrosis 1 in 3,000 1 in 360,000 Cystinosis 1 in 22,000 < 1 in 1,000,000 **D-bifunctional Protein Deficiency** 1 in 9,000 < 1 in 1,000,000 Delta-sarcoglycanopathy < 1 in 40,000 < 1 in 1,000,000 Dihydrolipoamide Dehydrogenase Deficiency < 1 in 50,000 < 1 in 1,000,000 Dysferlinopathy 1 in 11,000 < 1 in 1,000,000 Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) Not calculated Not calculated NM_000124.2(ERCC6):c.3465delC(Y1155*) **ERCC6-related Disorders** 1 in 1,500 heterozygote † ERCC8-related Disorders < 1 in 9.900 < 1 in 1.000.000 **EVC-related Ellis-van Creveld Syndrome** 1 in 7,500 < 1 in 1,000,000 EVC2-related Ellis-van Creveld Syndrome < 1 in 50,000 < 1 in 1,000,000 **Fabry Disease** < 1 in 1.000.000 1 in 80.000 **Familial Dysautonomia** < 1 in 50,000 < 1 in 1,000,000 **Familial Mediterranean Fever** < 1 in 50,000 < 1 in 1,000,000 Fanconi Anemia Complementation Group A 1 in 2 800 < 1 in 1.000.000 Fanconi Anemia, FANCC-related < 1 in 50,000 < 1 in 1.000.000 **FKRP-related Disorders** 1 in 16.000 < 1 in 1,000,000 **FKTN-related Disorders** < 1 in 50.000 < 1 in 1,000,000 Galactokinase Deficiency 1 in 10 000 < 1 in 1,000,000 Galactosemia 1 in 8,600 < 1 in 1,000,000 Gamma-sarcoglycanopathy 1 in 3,000 < 1 in 1,000,000 Gaucher Disease 1 in 260 1 in 110.000 GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness 1 in 2,500 1 in 260,000 **GLB1-related Disorders** 1 in 19,000 < 1 in 1,000,000 **GLDC-related Glycine Encephalopathy** 1 in 2.800 < 1 in 1,000,000 **Glutaric Acidemia, GCDH-related** 1 in 16,000 < 1 in 1.000.000 Glycogen Storage Disease Type Ia 1 in 18,000 < 1 in 1.000.000 **Glycogen Storage Disease Type Ib** 1 in 35.000 < 1 in 1.000.000 **Glycogen Storage Disease Type III** 1 in 16.000 < 1 in 1.000.000 **GNE Myopathy** 1 in 23.000 < 1 in 1,000,000 **GNPTAB-related** Disorders 1 in 32,000 < 1 in 1,000,000 HADHA-related Disorders 1 in 20,000 < 1 in 1,000,000 Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and 1 in 3,100 1 in 390,000 Sickle Cell Disease) **Hereditary Fructose Intolerance** 1 in 7.900 < 1 in 1.000.000 Herlitz Junctional Epidermolysis Bullosa, LAMB3-related < 1 in 50,000 < 1 in 1,000,000 Hexosaminidase A Deficiency (Including Tay-Sachs Disease) 1 in 30,000 < 1 in 1,000,000 < 1 in 33,000 < 1 in 1,000,000 **HMG-CoA Lyase Deficiency** Holocarboxylase Synthetase Deficiency 1 in 15,000 < 1 in 1,000,000 Homocystinuria, CBS-related 1 in 9,400 < 1 in 1,000,000 Hydrolethalus Syndrome < 1 in 50.000 < 1 in 1,000,000 Hypophosphatasia 1 in 27,000 < 1 in 1,000,000 **Isovaleric Acidemia** 1 in 32,000 < 1 in 1,000,000 **Joubert Syndrome 2** < 1 in 50,000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMA3-related < 1 in 50.000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMC2-related < 1 in 50,000 < 1 in 1,000,000 KCNJ11-related Familial Hyperinsulinism < 1 in 50,000 < 1 in 1,000,000 Krabbe Disease < 1 in 1,000,000 1 in 14,000 LAMA2-related Muscular Dystrophy 1 in 34,000 < 1 in 1,000,000 Leigh Syndrome, French-Canadian Type < 1 in 50,000 < 1 in 1,000,000 Lipoid Congenital Adrenal Hyperplasia < 1 in 50,000 < 1 in 1,000,000 Lysosomal Acid Lipase Deficiency 1 in 18,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type la 1 in 42,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type Ib 1 in 39,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type II 1 in 13,000 < 1 in 1,000,000 Medium Chain Acyl-CoA Dehydrogenase Deficiency 1 in 4,400 1 in 790,000 Megalencephalic Leukoencephalopathy with Subcortical Cysts < 1 in 50,000 < 1 in 1,000,000 Metachromatic Leukodystrophy < 1 in 1,000,000 1 in 16.000 Methylmalonic Acidemia, cblA Type < 1 in 50,000 < 1 in 1,000,000 Methylmalonic Acidemia, cblB Type 1 in 48,000 < 1 in 1,000,000

MALE DONOR 12474 DOB Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578 FEMALE N/A

Disease	DONOR 12474 Residual Risk	Reproductive Risk
Methylmalonic Aciduria and Homocystinuria, cblC Type	1 in 16,000	< 1 in 1,000,000
MKS1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Mucolipidosis III Gamma	< 1 in 50,000	< 1 in 1,000,000
Mucolipidosis IV	< 1 in 50,000	< 1 in 1,000,000
Mucopolysaccharidosis Type I	1 in 16,000	< 1 in 1,000,000
Mucopolysaccharidosis Type II	1 in 600,000	1 in 150,000
Mucopolysaccharidosis Type IIIA	1 in 12,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIB	1 in 25,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIC	1 in 37,000	< 1 in 1,000,000
MUT-related Methylmalonic Acidemia	1 in 26,000	< 1 in 1,000,000
MYO7A-related Disorders	1 in 15,000	< 1 in 1,000,000
NEB-related Nemaline Myopathy	1 in 1,200	1 in 400,000
Nephrotic Syndrome, NPHS1-related	< 1 in 50,000	< 1 in 1,000,000
Nephrotic Syndrome, NPHS2-related	1 in 35,000	< 1 in 1,000,000
Niemann-Pick Disease Type C1	1 in 19,000	< 1 in 1,000,000
Niemann-Pick Disease Type C2	< 1 in 50,000	< 1 in 1,000,000
Niemann-Pick Disease, SMPD1-related	1 in 25,000	< 1 in 1,000,000
Nijmegen Breakage Syndrome	1 in 16,000	< 1 in 1,000,000
Ornithine Transcarbamylase Deficiency	< 1 in 1,000,000	1 in 140,000
PCCA-related Propionic Acidemia	1 in 4,200	< 1 in 1,000,000
PCCB-related Propionic Acidemia	1 in 22,000	< 1 in 1,000,000
PCDH15-related Disorders	1 in 3,300	< 1 in 1,000,000
Pendred Syndrome	1 in 8,200	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 1	1 in 16,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 3	1 in 44,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 4	1 in 9,300	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 5	< 1 in 71,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 6	< 1 in 50,000	< 1 in 1,000,000
Phenylalanine Hydroxylase Deficiency	1 in 4,800	1 in 940,000
POMGNT-related Disorders	< 1 in 12,000	< 1 in 1,000,000
Pompe Disease	1 in 4,000	< 1 in 1,000,000
PPT1-related Neuronal Ceroid Lipofuscinosis	1 in 7,700	< 1 in 1,000,000
Primary Carnitine Deficiency	1 in 11,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 1	1 in 17,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 2	< 1 in 50,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 3	1 in 13,000	< 1 in 1,000,000
Pycnodysostosis	1 in 43,000	< 1 in 1,000,000
Pyruvate Carboxylase Deficiency	1 in 25,000	< 1 in 1,000,000
Rhizomelic Chondrodysplasia Punctata Type 1	1 in 16,000	< 1 in 1,000,000
RTEL1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Salla Disease	< 1 in 30,000	< 1 in 1,000,000
Sandhoff Disease	1 in 32,000	< 1 in 1,000,000
Short-chain Acyl-CoA Dehydrogenase Deficiency	1 in 11,000	< 1 in 1,000,000
Sjogren-Larsson Syndrome	< 1 in 12,000	< 1 in 1,000,000
SLC26A2-related Disorders	1 in 16,000	< 1 in 1,000,000
Smith-Lemli-Opitz Syndrome	1 in 9,400	< 1 in 1,000,000
Spastic Paraplegia Type 15	< 1 in 50,000	< 1 in 1,000,000
Spinal Muscular Atrophy	Negative for g.27134T>G SNP SMN1: 2 copies 1 in 770	1 in 110,000
Spondylothoracic Dysostosis	< 1 in 50,000	< 1 in 1,000,000
TGM1-related Autosomal Recessive Congenital Ichthyosis	1 in 22,000	< 1 in 1,000,000
TPP1-related Neuronal Ceroid Lipofuscinosis	1 in 30,000	< 1 in 1,000,000
Tyrosine Hydroxylase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Tyrosinemia Type I	c.1062+5G>A heterozygote [†]	1 in 630
Tyrosinemia Type II	1 in 25,000	< 1 in 1,000,000
USH1C-related Disorders	1 in 35,000	< 1 in 1,000,000 < 1 in 1,000,000
USH2A-related Disorders	1 in 2,200	< 1 in 1,000,000
Usher Syndrome Type 3	1 in 41,000	< 1 in 1,000,000 < 1 in 1,000,000
Very-long-chain Acyl-CoA Dehydrogenase Deficiency	1 in 18,000	< 1 in 1,000,000 < 1 in 1,000,000
Wilson Disease	1 in 8,600	< 1 in 1,000,000 < 1 in 1,000,000
X-linked Adrenoleukodystrophy	1 in 90,000	1 in 42,000
	1 11 30,000	1 111 42,000

MALE DONOR 12474 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004212718578 FEMALE N/A

Disease	DONOR 12474 Residual Risk	Reproductive Risk
X-linked Alport Syndrome	Not calculated	Not calculated
X-linked Congenital Adrenal Hypoplasia	< 1 in 1,000,000	< 1 in 1,000,000
X-linked Juvenile Retinoschisis	< 1 in 1,000,000	1 in 40,000
X-linked Myotubular Myopathy	Not calculated	Not calculated
X-linked Severe Combined Immunodeficiency	< 1 in 1,000,000	1 in 200,000
Xeroderma Pigmentosum Group A	< 1 in 50,000	< 1 in 1,000,000
Xeroderma Pigmentosum Group C	1 in 7,300	< 1 in 1,000,000