

Foresight® Carrier Screen

RESULTS RECIPIENT **SEATTLE SPERM BANK** Attn: Jeffrey Olliffe 4915 25th Ave NE Ste 204w Seattle, WA 98105-5668 Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 09/24/2020 MALE DONOR 12635 DOB: Ethnicity: East Asian Sample Type: EDTA Blood Date of Collection: 09/15/2020 Date Received: 09/17/2020 Date Tested: 09/23/2020 Barcode: 11004512732134 Accession ID: CSL9MDLZNZFHEGN Indication: Egg or sperm donor FEMALE N/A

POSITIVE: CARRIER

ABOUT THIS TEST

The **Myriad Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	DONOR 12635	Partner
Panel Information	Foresight Carrier Screen Universal Panel Fundamental Plus Panel Fundamental Panel (175 conditions tested)	N/A
POSITIVE: CARRIER Cerebrotendinous Xanthomatosis Reproductive Risk: 1 in 450 Inheritance: Autosomal Recessive	CARRIER* NM_000784.3(CYP27A1):c. 1017+1G>A heterozygote †	The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps".
POSITIVE: CARRIER Alpha Thalassemia, HBA1/HBA2-related Reproductive Risk: Not Calculated Inheritance: Autosomal Recessive	CARRIER* NM_000517.4(HBA2):c.427T>C (*143Qext*31, aka Hb Constant Spring) heterozygote Alpha globin status: -a/aa.	Reproductive risk can be more accurately assessed after carrier screening of the partner. Carrier testing should be considered. See "Next Steps".

†Likely to have a negative impact on gene function. *Carriers generally do not experience symptoms.

No disease-causing mutations were detected in any other gene tested. A complete list of all conditions tested can be found on page 9.

CLINICAL NOTES

None

NEXT STEPS

- Carrier testing should be considered for the diseases specified above for the patient's partner, as both parents must be carriers before a child is at high risk of developing the disease.
- Genetic counseling is recommended and patients may wish to discuss any positive results with blood relatives, as there is an increased chance that they are also carriers.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134 FEMALE N/A

POSITIVE: CARRIER Cerebrotendinous Xanthomatosis

Reproductive risk: 1 in 450 Risk before testing: 1 in 50,000

Gene: CYP27A1 | Inheritance Pattern: Autosomal Recessive

Patient	DONOR 12635	No partner tested
Result	Carrier	N/A
Variant(s)	NM_000784.3(CYP27A1):c.1017+1G>A heterozygote [†]	N/A
Methodology	Sequencing with copy number analysis (v3.1)	N/A
Interpretation	This individual is a carrier of cerebrotendinous xanthomatosis. Carriers generally do not experience symptoms.	N/A
Detection rate	>99%	N/A
Exons tested	NM_000784:1-9.	N/A

†Likely to have a negative impact on gene function.

What is Cerebrotendinous Xanthomatosis?

Cerebrotendinous xanthomatosis (CTX) is a disease that leads to increased storage of fats, such as cholesterol, in the body. Common features of this disorder include diarrhea that starts in infancy, clouding of the eyes that affect vision (cataracts), deposits of fat under the skin (xanthomas), and neurologic problems that get worse over time.

For many affected individuals, chronic diarrhea beginning in infancy is the earliest manifestation. Development of cataracts during early childhood is typical for CTX. Xanthomas most commonly begin appearing in adolescence and early adulthood, often on the back of the heel (the Achilles) and other tendons, though they can occur throughout the body. Most individuals with CTX have no or mild neurologic problems before puberty. Beginning in the 20s, neurologic symptoms such as seizures and an inability to control movements can develop. These symptoms will often worsen over time. Additional neurological features may include intellectual disability and mental health problems such as depression or hallucinations. Some other reported features of CTX include weak and brittle bones and heart problems.

How common is Cerebrotendinous Xanthomatosis?

Cases have been reported in most regions of the world, but exact statistics are limited. At this time, there is no consensus on the global incidence of this disorder. the condition seems to be most common in the Druze population in Israel and in Sephardic Jews of Moroccan descent. The incidence in Caucasians is at least 1 in 50,000, and in those of Spanish descent it is estimated to be 1 in 1,800,000.

How is Cerebrotendinous Xanthomatosis treated?

There is no cure for CTX, but early diagnosis and treatment with chenodeoxycholic acid (CDCA) may prevent and can improve some symptoms. Other treatment focuses on the management of symptoms, such as medication for seizures and trouble controlling movements or calcium and vitamin D for weak and brittle bones. Eye surgery to remove cataracts is often required in adulthood.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

What is the prognosis for a person with Cerebrotendinous Xanthomatosis?

If identified and treated early, clinical symptoms of the disorder may be prevented. While treatment may improve some symptoms, it may not be able to reverse all features once there has been disease progression. In addition, lifespan may be normal if treated early. Without treatment, the average lifespan is 50-60 years due to progressive deterioration.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

POSITIVE: CARRIER Alpha Thalassemia, HBA1/HBA2-related

Genes: HBA1, HBA2 | Inheritance Pattern: Autosomal Recessive

Patient	DONOR 12635	No partner tested
Result	Carrier	N/A
Variant(s)	NM_000517.4(HBA2):c.427T>C(*143Qext*31, aka Hb Constant Spring) heterozygote	N/A
Methodology	Analysis of homologous regions	N/A
Interpretation	This individual is a carrier of alpha thalassemia. Carriers do not experience symptoms, but may have hematologic abnormalities. Hb Constant Spring is classified as an alpha+ mutation. Based on this result, the patient's alpha globin status is -a/aa (carrier), where "-" indicates a deleted or nonfunctional alpha globin gene.	N/A
Detection rate	90%	N/A
Variants tested	-(alpha)20.5,BRIT,MEDI,MEDII,SEA,THAI orFIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, anti3.7, anti4.2, del HS-40.	N/A

REPRODUCTIVE RISK SUMMARY

Reproductive risk can be more accurately assessed after carrier screening of the partner. Genetic counseling is recommended to review results and risks in further detail.

What is Alpha Thalassemia, HBA1/HBA2-related?

Alpha thalassemia, caused by harmful genetic changes (mutations) in the *HBA1* and *HBA2* genes, is an inherited blood disorder that affects hemoglobin. Hemoglobin is a protein found in red blood cells (RBCs) that makes it possible for RBCs to bind and carry oxygen throughout the body. Hemoglobin is made up of two different protein chains, which are referred to as alpha and beta chains or as alpha and beta globin. Alpha thalassemia is caused by a disruption in the normal production of alpha globin. The *HBA1* and *HBA2* genes work together to make a functioning alpha globin protein.

There are various forms of alpha thalassemia, which have a variety of symptoms. The type of alpha thalassemia an individual has depends on the combination of mutations they inherit in the *HBA1* and *HBA2* genes. Most individuals inherit two normal copies of the *HBA1* gene (one from each parent) and two normal copies of the *HBA2* gene. This means that each individual has four gene copies that make up the alpha chain of their hemoglobin (two *HBA1* and *two HBA2*). In order to have symptoms of alpha thalassemia, an individual must have mutations in three or four of their gene copies. Carriers generally have either two or three functional alpha globin genes and do not have any symptoms of the conditions.

SILENT CARRIER: THREE FUNCTIONAL ALPHA GLOBIN GENES

Silent carriers of alpha thalassemia have a mutation in just one of the four alpha globin genes. Individuals with this finding are known as silent carriers because they typically do not have any disease symptoms or visible abnormalities in their RBCs.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

FEMALE

N/A

ALPHA THALASSEMIA-TRAIT (CARRIER): TWO FUNCTIONAL ALPHA GLOBIN GENES

Carriers of alpha-thalassemia have a mutation in two of the four alpha globin genes. Individuals with this finding generally have RBCs that are pale and small when visualized (mild anemia). Individuals with only two functional alpha globin genes normally do not require treatment, as they generally do not exhibit symptoms of disease. There are reports of individuals with two mutations in *HBA1* and/or *HBA2* who have a diagnosis of HbH disease (see below). One example of this is when individuals have two copies of the hemoglobin Constant Spring variant, which is common in the Southeast Asian population.

HEMOGLOBIN H DISEASE: ONE FUNCTIONAL ALPHA GLOBIN GENE

Hemoglobin H (HbH) disease is typically the result of mutations in three of the four alpha globin genes. This form is highly variable. Many individuals with HbH do not have any symptoms, while some may have mild to moderate anemia. Other symptoms of HbH include yellowing of the skin or eyes (jaundice), enlargement of the spleen, bone deformities, fatigue, and other minor complications.

HEMOGLOBIN BART SYNDROME: ZERO FUNCTIONAL ALPHA GLOBIN GENES

Hemoglobin Bart (Hb Bart) syndrome is typically the result of mutations in all four of the alpha globin genes. Hb Bart is generally associated with fetal death due to the buildup of excess fluid in the body and tissues (hydrops fetalis). Signs and symptoms in the newborn period can include severe anemia, enlargement of the liver and spleen, and birth defects of the heart, urinary system, and genitals. Most babies with this condition are stillborn or die soon after birth. When fetal blood transfusions are successful, survival is possible; however, there is high risk for intellectual and physical disability in these survivors.

How common is Alpha Thalassemia, HBA1/HBA2-related?

The incidence of alpha thalassemia in the population is approximately 1 in 10,000 births. However, the incidence of Hb Bart and HbH is much higher among individuals of Southeast Asian, Mediterranean, and Middle Eastern descent. Southeast Asia has the highest documented incidence, with estimates around 1 in 400 affected births.

How is Alpha Thalassemia, HBA1/HBA2-related treated?

Treatment for HbH disease varies based on the severity of the symptoms. Many individuals will need a blood transfusion during times of severe illness (crises). This is usually a rare occurrence, and it can be caused by environmental stressors such as fever or exposure to specific medications. Individuals with more severe symptoms may require regular blood transfusions, folic-acid supplementation, antibiotics during certain procedures, iron chelation therapy (removal of excess iron from the body), removal of the spleen, and possibly therapies to increase fetal hemoglobin levels.

Rare cases of survivors with Hb Bart syndrome have been reported when fetal blood transfusions were given, followed by regular treatments similar to those given to individuals with HbH disease. Treatment or surgical correction of birth defects may also be possible. There is a high risk for intellectual and physical disability in these survivors. These individuals may be candidates for hematopoietic stem cell transplantation.

What is the prognosis for an individual with Alpha Thalassemia, HBA1/HBA2-related?

The long-term outcome of HbH ultimately depends on the severity of the disease. Mild disease may be manageable with little effect on daily life. However, more severe disease will require frequent and regular therapy and may be associated with a shortened lifespan. Patients who do not receive any treatment will have poor outcomes, and many will not live past five years of age. However, when treated, individuals with HbH disease can have a near-normal lifespan.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

FEMALE N/A

Hb Bart syndrome is the most severe clinical condition related to alpha thalassemia, and death may occur *in utero* or in the newborn period. There may also be maternal complications during pregnancy if the fetus has Hb Bart syndrome. These complications include high blood pressure with fluid build-up and protein in the urine (preeclampsia), excessive amniotic fluid (polyhydramnios) or reduced amniotic fluid (oligohydramnios), hemorrhage, and premature delivery. When fetal blood transfusions are successful, survival is possible; however, there is a high risk for intellectual and physical disability in survivors.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134 FEMALE N/A

Methods and Limitations

DONOR 12635 [Foresight Carrier Screen]: Sequencing with copy number analysis, spinal muscular atrophy, and analysis of homologous regions (DTS v3.1).

Sequencing with copy number analysis

High-throughput sequencing and read depth-based copy number analysis are used to analyze the listed exons, as well as selected intergenic and intronic regions, of the genes in the Conditions Tested section of the report. The region of interest (ROI) of the test comprises these regions, in addition to the 20 intronic bases flanking each exon. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to high coverage and the sequences are compared to standards and references of normal variation (Genome Reference Consortium Human Build 37 (GRCh37)/hg19). More than 99% of all bases in the ROI are sequenced at greater than the minimum read depth. Mutations may not be detected in areas of lower sequence coverage. Small insertions and deletions may not be as accurately determined as single nucleotide variants. Genes that have closely related pseudogenes may be addressed by a different method. *CFTR* and *DMD* testing includes analysis for both large (exon-level) deletions and duplications with an average sensitivity of 99%, while other genes are only analyzed for large deletions with a sensitivity of >75%. However, the sensitivity may be higher for selected founder deletions. The breakpoints of copy number variants and exons affected are estimated from probe positions. Only exons known to be included in the copy number variant are provided in the name. In some cases, the copy number variant may be larger or smaller than indicated. If *GJB2* is tested, large upstream deletions involving the genes *GJB6* and/or *CRYL1* that affect the expression of *GJB2* are also analyzed. Mosaicism or somatic variants present at low levels may not be detected. If detected, these may not be reported.

Detection rates are determined by using literature to estimate the fraction of disease alleles, weighted by frequency, that the methodology is unable to detect. Detection rates only account for analytical sensitivity and certain variants that have been previously described in the literature may not be reported if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease-specific rates of de novo mutations.

All variants that are a recognized cause of the disease will be reported. In addition, variants that have not previously been established as a recognized cause of disease may be identified. In these cases, only variants classified as "likely" pathogenic are reported. Likely pathogenic variants are described elsewhere in the report as "likely to have a negative impact on gene function". Likely pathogenic variants are evaluated and classified by assessing the nature of the variant and reviewing reports of allele frequencies in cases and controls, functional studies, variant annotation and effect prediction, and segregation studies. Exon level duplications are assumed to be in tandem and are classified according to their predicted effect on the reading frame. Benign variants, variants of uncertain significance, and variants not directly associated with the intended disease phenotype are not reported. Curation summaries of reported variants are available upon request.

Spinal muscular atrophy

Targeted copy number analysis is used to determine the copy number of exon 7 of the *SMN1* gene relative to other genes. Other mutations may interfere with this analysis. Some individuals with two copies of *SMN1* are carriers with two *SMN1* genes on one chromosome and a *SMN1* deletion on the other chromosome. This is more likely in individuals who have 2 copies of the *SMN1* gene and are positive for the g.27134T>G SNP, which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have 2 copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss of function mutations in certain genes that have homology to other regions. The precise breakpoints of large deletions in these genes cannot be determined, but are estimated from copy number analysis. High numbers of pseudogene copies may interfere with this analysis.

If *CYP21A2* is tested, patients who have one or more additional copies of the *CYP21A2* gene and a loss of function mutation may not actually be a carrier of 21-hydroxylasedeficient congenital adrenal hyperplasia (CAH). Because the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are only based on published incidences for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate of overall chances for 21-hydroxylase-deficient CAH, especially in the aforementioned populations, as they do not account for non-classic CAH. If *HBA1/HBA2* are tested, some individuals with four alpha globin genes may be carriers, with three genes on one chromosome and a deletion on the other chromosome. This and similar, but rare, carrier states, where complementary changes exist in both the gene and a pseudogene, may not be detected by the assay.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

FEMALE N/A

Limitations

In an unknown number of cases, nearby genetic variants may interfere with mutation detection. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions and technical errors. This test is designed to detect and report germline alterations. While somatic variants present at low levels may be detected, these may not be reported. f more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes. This test is not designed to detect sex chromosome copy number variations. If present, sex chromosome abnormalities may significantly reduce test sensitivity for X-linked conditions. Residual and reproductive risks provided assume a normal karyotype. Risks for individuals with abnormal karyotypes may be different. The test does not fully address all inherited forms of intellectual disability, birth defects and genetic disease. A family history of any of these conditions may warrant additional evaluation. Furthermore, not all mutations will be identified in the genes analyzed and additional testing may be beneficial for some patients. For example, individuals of African, Southeast Asian, and Mediterranean ancestry are at increased risk for being carriers for hemoglobinopathies, which can be identified by CBC and hemoglobin electrophoresis or HPLC (*ACOG Practice Bulletin No. 78. Obstet.Gynecol. 2007;109:229-37*).

This test was developed and its performance characteristics determined by Myriad Women's Health, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: **#05D1102604**.

Resources

GENOME CONNECT | http://www.genomeconnect.org

Patients can share their reports via research registries such as Genome Connect, an online research registry working to build the knowledge base about genetics and health. Genome Connect provides patients, physicians, and researchers an opportunity to share genetic information to support the study of the impact of genetic variation on health conditions.

SENIOR LABORATORY DIRECTOR

Salk

Jack Ji, PhD, FACMG

Report content approved by Lulu Mao, PhD, DABMGG on Sep 24, 2020

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134 FEMALE N/A

Conditions Tested

11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia - Gene: CYP11B1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000497:1-9. **Detection Rate:** East Asian 94%.

6-pruvoyl-tetrahydropterin Synthase Deficiency - Gene: PTS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000317:1-6. **Detection Rate:** East Asian >99%.

ABCC8-related Familial Hyperinsulinism - Gene: ABCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000352:1-39. Detection Rate: East Asian >99%.

Adenosine Deaminase Deficiency - Gene: ADA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000022:1-12. Detection Rate: East Asian >99%.

Alpha Thalassemia, HBA1/HBA2-related - Genes: HBA1, HBA2. Autosomal Recessive. Analysis of homologous regions. Variants (13): -(alpha)20.5, --BRIT, --MEDI, --MEDII, --SEA, --THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, anti3.7, anti4.2, del HS-40. Detection Rate: East Asian 90%. Alpha-mannosidosis - Gene: MAN2B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000528:1-23. Detection Rate: East Asian >99%. Alpha-sarcoglycanopathy - Gene: SGCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000023:1-9. Detection Rate: East Asian >99%. Alstrom Syndrome - Gene: ALMS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015120:1-23. Detection Rate: East Asian >99%. AMT-related Glycine Encephalopathy - Gene: AMT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000481:1-9. Detection Rate: East Asian >99%.

Andermann Syndrome - Gene: SLC12A6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133647:1-25. Detection Rate: East Asian >99%. Argininemia - Gene: ARG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000045:1-8. Detection Rate: East Asian 97%.

Argininosuccinic Aciduria - Gene: ASL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001024943:1-16. Detection Rate: East Asian >99%. Aspartylglucosaminuria - Gene: AGA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000027:1-9. Detection Rate: East Asian >99%. Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000370:1-5. Detection Rate: East Asian >99%.

Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000051:2-63. Detection Rate: East Asian >99%. ATP7A-related Disorders - Gene: ATP7A. X-linked Recessive. Sequencing with copy

number analysis. Exons: NM_000052:2-23. Detection Rate: East Asian 92%. Autoimmune Polyglandular Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000383:1-14. Detection Rate: East Asian >99%

Autosomal Recessive Osteopetrosis Type 1 - Gene: TCIRG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006019:2-20. Detection Rate: East Asian >99%.

Autosomal Recessive Polycystic Kidney Disease, PKHD1-related - Gene: PKHD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138694 2-67. Detection Rate: East Asian >99%.

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay - Gene: SACS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014363 2-10. Detection Rate: East Asian 99%.

Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024649:1-17. Detection Rate: East Asian >99%.

Bardet-Biedl Syndrome, BBS10-related - Gene: BBS10. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024685:1-2. Detection Rate: East Asian >99%. **Bardet-Biedl Syndrome, BBS12-related** - Gene: BBS12. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_152618:2. Detection Rate: East Asian >99%.

Bardet-Biedl Syndrome, BBS2-related - Gene: BBS2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_031885:1-17. **Detection Rate:** East Asian >99%.

BCS1L-related Disorders - Gene: BCS1L. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004328:3-9. Detection Rate: East Asian >99%. Beta-sarcoglycanopathy - Gene: SGCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000232:1-6. Detection Rate: East Asian >99%. Biotinidase Deficiency - Gene: BTD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000060:1-4. Detection Rate: East Asian >99%. Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000057:2-22. Detection Rate: East Asian >99%. Calpainopathy - Gene: CAPN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000070:1-24. Detection Rate: East Asian >99%. Calpainopathy - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000070:1-24. Detection Rate: East Asian >99%. Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000049:1-6. Detection Rate: East Asian >99%. Carbamoylphosphate Synthetase I Deficiency - Gene: CPS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001875:1-38. Detection Rate: East Asian >99%.

Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001876:2-19. **Detection Rate:** East Asian >99%.

Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000098:1-5. Detection Rate: East Asian >99%.

Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NR_003051:1. Detection Rate: East Asian >99%. Cerebrotendinous Xanthomatosis - Gene: CYP27A1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000784:1-9. Detection Rate: East Asian >99%.

Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000050:3-16. Detection Rate: East Asian 86%.

CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001042432 2-16. Detection Rate: East Asian >99%.

CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006493:1-4. Detection Rate: East Asian >99%.

CLN6-related Neuronal Ceroid Lipofuscinosis - Gene: CLN6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017882:1-7. Detection Rate: East Asian >99%.

CLN8-related Neuronal Ceroid Lipofuscinosis - Gene: CLN8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_018941:2-3. **Detection Rate:** East Asian >99%.

Cohen Syndrome - Gene: VPS13B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017890:2-62. Detection Rate: East Asian 97%.

COL4A3-related Alport Syndrome - Gene: COL4A3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000091:1-52. Detection Rate: East Asian 97%.

COL4A4-related Alport Syndrome - Gene: COL4A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000092:2-48. **Detection Rate:** East Asian 98%.

Combined Pituitary Hormone Deficiency, PROP1-related - Gene: PROP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006261:1-3. Detection Rate: East Asian >99%.

Congenital Adrenal Hyperplasia, CYP21A2-related - Gene: CYP21A2. Autosomal Recessive. Analysis of homologous regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L,

Q319*, Q319*+CYP21A2dup, R357W, V281L, [I237N;V238E;M240K], c.293-13C>G. Detection Rate: East Asian 88%.

Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000303:1-8. **Detection Rate:** East Asian >99%.

Congenital Disorder of Glycosylation Type Ic - **Gene:** ALG6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_013339:2-15. **Detection Rate:** East Asian >99%.

Congenital Disorder of Glycosylation, MPI-related - Gene: MPI. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002435:1-8. Detection Rate: East Asian >99%.

Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_025136:1-2. Detection Rate: East Asian >99%.

Cystic Fibrosis - Gene: CFTR. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. **Detection Rate:** East Asian >99%.

Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004937:3-12. **Detection Rate:** East Asian >99%.

D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000414:1-24. Detection Rate: East Asian 98%.

Delta-sarcoglycanopathy - Gene: SGCD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000337:2-9. Detection Rate: East Asian 99%. Dihydrolipoamide Dehydrogenase Deficiency - Gene: DLD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000108:1-14. Detection Rate: East Asian >99%.

Dysferlinopathy - Gene: DYSF. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003494:1-55. Detection Rate: East Asian 98%.

Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) - Gene: DMD. X-linked Recessive. Sequencing with copy number analysis. **Exons:** NM_004006:1-79. **Detection Rate:** East Asian >99%.

ERCC6-related Disorders - Gene: ERCC6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000124:2-21. Detection Rate: East Asian 99%. ERCC8-related Disorders - Gene: ERCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000082:1-12. Detection Rate: East Asian 95%. EVC-related Ellis-van Creveld Syndrome - Gene: EVC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_153717:1-21. Detection Rate: East Asian 96%.

EVC2-related Ellis-van Creveld Syndrome - Gene: EVC2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_147127:1-22. **Detection Rate:** East Asian >99%.

Fabry Disease - Gene: GLA. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000169:1-7. Detection Rate: East Asian 98%.

Familial Dysautonomia - Gene: IKBKAP. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003640:2-37. Detection Rate: East Asian >99%. Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000243:1-10. Detection Rate: East Asian >99%.

Fanconi Anemia Complementation Group A - Gene: FANCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000135:1-43. Detection Rate: East Asian 92%.

Fanconi Anemia, FANCC-related - Gene: FANCC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000136:2-15. Detection Rate: East Asian >99%.

FKRP-related Disorders - Gene: FKRP. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_024301:4. **Detection Rate:** East Asian >99%.

FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001079802:3-11. **Detection Rate:** East Asian 10%.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

Free Sialic Acid Storage Disorders - Gene: SLC17A5. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_012434:1-11. **Detection Rate:** East Asian 98%.

FEMALE

N/A

Galactokinase Deficiency - Gene: GALK1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000154:1-8. Detection Rate: East Asian >99%. Galactosemia - Gene: GALT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000155:1-11. Detection Rate: East Asian >99%.

Gamma-sarcoglycanopathy - Gene: SGCG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000231:2-8. Detection Rate: East Asian 88%. Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of homologous regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: East Asian 60%.

GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness - Gene: GJB2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004004:1-2. Detection Rate: East Asian >99%.

GLB1-related Disorders - Gene: GLB1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000404:1-16. Detection Rate: East Asian >99%.

GLDC-related Glycine Encephalopathy - Gene: GLDC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000170:1-25. Detection Rate: East Asian 94%.

Glutaric Acidemia, GCDH-related - Gene: GCDH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000159:2-12. Detection Rate: East Asian >99%.

Glycogen Storage Disease Type la - Gene: G6PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000151:1-5. **Detection Rate:** East Asian >99%.

Glycogen Storage Disease Type Ib - Gene: SLC37A4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001164277 3-11. Detection Rate: East Asian >99%.

Glycogen Storage Disease Type III - Gene: AGL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000642:2-34. Detection Rate: East Asian >99%.

GNE Myopathy - Gene: GNE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001128227:1-12. Detection Rate: East Asian >99%.

GNPTAB-related Disorders - Gene: GNPTAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024312:1-21. Detection Rate: East Asian 98%.

HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000182:1-20. Detection Rate: East Asian >99%. Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000518:1-3. Detection Rate: East Asian >99%.

Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000035:2-9. Detection Rate: East Asian >99%.

Herlitz Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000228 2-23. Detection Rate: East Asian >99%.

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000520:1-14. Detection Rate: East Asian >99%.

HMG-CoA Lyase Deficiency - Gene: HMGCL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000191:1-9. Detection Rate: East Asian 98%.

Holocarboxylase Synthetase Deficiency - Gene: HLCS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000411:4-12. Detection Rate: East Asian >99%.

Homocystinuria, CBS-related - Gene: CBS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000071:3-17. Detection Rate: East Asian >99%. Hydrolethalus Syndrome - Gene: HYLS1. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_145014:4. Detection Rate: East Asian >99%. Hypophosphatasia - Gene: ALPL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000478:2-12. Detection Rate: East Asian >99%.

Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002225:1-12. Detection Rate: East Asian >99%. Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001173990:1-5. Detection Rate: East Asian >99%.

Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000227:1-38. Detection Rate: East Asian >99%.

Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005562:1-23. Detection Rate: East Asian >99%.

KCNJ11-related Familial Hyperinsulinism - Gene: KCNJ11. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000525:1. Detection Rate: East Asian >99%.

Krabbe Disease - Gene: GALC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000153:1-17. Detection Rate: East Asian >99%. LAMA2-related Muscular Dystrophy - Gene: LAMA2. Autosomal Recessive.

Sequencing with copy number analysis. Exons: NM_000426:1-65. Detection Rate: East Asian >99%.

Leigh Syndrome, French-Canadian Type - Gene: LRPPRC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133259:1-38. Detection Rate: East Asian >99%.

Lipoid Congenital Adrenal Hyperplasia - Gene: STAR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000349:1-7. Detection Rate: East Asian >99%.

Lysosomal Acid Lipase Deficiency - Gene: LIPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000235:2-10. Detection Rate: East Asian >99%.

Maple Syrup Urine Disease Type Ia - Gene: BCKDHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000709:1-9. Detection Rate: East Asian >99%.

Maple Syrup Urine Disease Type Ib - Gene: BCKDHB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_183050:1-10. Detection Rate: East Asian >99%.

Maple Syrup Urine Disease Type II - Gene: DBT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001918:1-11. Detection Rate: East Asian 96%.

Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000016:1-12. Detection Rate: East Asian >99%.

Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015166 2-12. Detection Rate: East Asian >99%.

Metachromatic Leukodystrophy - Gene: ARSA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000487:1-8. Detection Rate: East Asian >99%.

Methylmalonic Acidemia, cblA Type - Gene: MMAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_172250:2-7. Detection Rate: East Asian >99%.

Methylmalonic Acidemia, cblB Type - Gene: MMAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_052845:1-9. Detection Rate: East Asian >99%.

Methylmalonic Aciduria and Homocystinuria, cblC Type - Gene: MMACHC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015506:1-4. Detection Rate: East Asian >99%.

MKS1-related Disorders - Gene: MKS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017777:1-18. Detection Rate: East Asian >99%. Mucolipidosis III Gamma - Gene: GNPTG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032520:1-11. Detection Rate: East Asian >99%. Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_020533:1-14. Detection Rate: East Asian >99%.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000203:1-14. Detection Rate: East Asian >99%.

Mucopolysaccharidosis Type II - Gene: IDS. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000202:1-9. Detection Rate: East Asian 88%. Mucopolysaccharidosis Type IIIA - Gene: SGSH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000199:1-8. Detection Rate: East Asian >99%.

Mucopolysaccharidosis Type IIIB - Gene: NAGLU. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000263:1-6. Detection Rate: East Asian >99%.

Mucopolysaccharidosis Type IIIC - Gene: HGSNAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_152419:1-18. Detection Rate: East Asian >99%.

MUT-related Methylmalonic Acidemia - Gene: MUT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000255:2-13. Detection Rate: East Asian >99%.

MYO7A-related Disorders - Gene: MYO7A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000260:2-49. Detection Rate: East Asian >99%. NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001271208:3-80,117-183. Detection Rate: East Asian 92%.

Nephrotic Syndrome, NPHS1-related - Gene: NPHS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004646:1-29. **Detection Rate:** East Asian >99%.

Nephrotic Syndrome, NPHS2-related - Gene: NPHS2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014625:1-8. Detection Rate: East Asian >99%.

Niemann-Pick Disease Type C1 - Gene: NPC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000271:1-25. Detection Rate: East Asian >99%.

Niemann-Pick Disease Type C2 - Gene: NPC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006432:1-5. Detection Rate: East Asian >99%.

Niemann-Pick Disease, SMPD1-related - Gene: SMPD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000543:1-6. Detection Rate: East Asian >99%.

Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002485:1-16. Detection Rate: East Asian >99%.

Ornithine Transcarbamylase Deficiency - Gene: OTC. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000531:1-10. Detection Rate: East Asian 97%.

PCCA-related Propionic Acidemia - Gene: PCCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000282:1-24. Detection Rate: East Asian 95%.

PCCB-related Propionic Acidemia - Gene: PCCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000532:1-15. Detection Rate: East Asian >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_033056:2-33. Detection Rate: East Asian 93%.

Pendred Syndrome - Gene: SLC26A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000441:2-21. Detection Rate: East Asian >99%.

Peroxisome Biogenesis Disorder Type 1 - Gene: PEX1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000466:1-24. **Detection Rate:** East Asian >99%.

Peroxisome Biogenesis Disorder Type 3 - Gene: PEX12. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000286:1-3. **Detection Rate:** East Asian >99%.

Peroxisome Biogenesis Disorder Type 4 - Gene: PEX6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000287:1-17. **Detection Rate:** East Asian 97%.

Peroxisome Biogenesis Disorder Type 5 - Gene: PEX2. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_000318:4. **Detection Rate:** East Asian >99%.

Peroxisome Biogenesis Disorder Type 6 - Gene: PEX10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153818:1-6. **Detection Rate:** East Asian >99%.

Phenylalanine Hydroxylase Deficiency - Gene: PAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000277:1-13. Detection Rate: East Asian >99%.

POMGNT-related Disorders - Gene: POMGNT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017739:2-22. Detection Rate: East Asian 96%.

Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000152:2-20. **Detection Rate:** East Asian >99%.

PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000310:1-9. Detection Rate: East Asian >99%.

Primary Carnitine Deficiency - Gene: SLC22A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003060:1-10. Detection Rate: East Asian >99%.

Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000030:1-11. Detection Rate: East Asian >99%.

Primary Hyperoxaluria Type 2 - Gene: GRHPR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012203:1-9. Detection Rate: East Asian >99%.

Primary Hyperoxaluria Type 3 - Gene: HOGA1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138413:1-7. Detection Rate: East Asian >99%.

Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000396:2-8. Detection Rate: East Asian >99%. Pyruvate Carboxylase Deficiency - Gene: PC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000920:3-22. Detection Rate: East Asian >99%.

Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000288:1-10. Detection Rate: East Asian >99%.

RTEL1-related Disorders - Gene: RTEL1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032957:2-35. Detection Rate: East Asian >99%. Sandhoff Disease - Gene: HEXB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_00521:1-14. Detection Rate: East Asian 99%.

Short-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000017:1-10. Detection Rate: East Asian >99%.

Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000382:1-10. Detection Rate: East Asian 96%.

SLC26A2-related Disorders - Gene: SLC26A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000112:2-3. Detection Rate: East Asian >99%.

Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001360:3-9. Detection Rate: East Asian >99%.

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134

Spastic Paraplegia Type 15 - Gene: ZFYVE26. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015346:2-42. Detection Rate: East Asian >99%.

Spinal Muscular Atrophy - Gene: SMN1. Autosomal Recessive. Spinal muscular atrophy. Variant (1): SMN1 copy number. Detection Rate: East Asian 93%. Spondylothoracic Dysostosis - Gene: MESP2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001039958:1-2. Detection Rate: East Asian >99%

TGM1-related Autosomal Recessive Congenital Ichthyosis - Gene: TGM1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM 000359 2-15. Detection Rate: East Asian >99%.

TPP1-related Neuronal Ceroid Lipofuscinosis - Gene: TPP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000391:1-13. Detection Rate: East Asian >99%.

Tyrosine Hydroxylase Deficiency - Gene: TH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_199292:1-14. Detection Rate: East Asian >99%.

Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000137:1-14. Detection Rate: East Asian >99%. Tyrosinemia Type II - Gene: TAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000353:2-12. Detection Rate: East Asian >99%. USH1C-related Disorders - Gene: USH1C. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005709:1-21. Detection Rate: East Asian >99%. USH2A-related Disorders - Gene: USH2A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005709:1-21. Detection Rate: East Asian >99%. USH2A-related Disorders - Gene: USH2A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_206933:2-72. Detection Rate: East Asian 94%. Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_174878:1-3. Detection Rate: East Asian >99%. Very-long-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000018:1-20. Detection Rate: East Asian >99%.

Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000053:1-21. Detection Rate: East Asian >99%.
X-linked Adrenoleukodystrophy - Gene: ABCD1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000033:1-6. Detection Rate: East Asian 77%.

X-linked Alport Syndrome - Gene: COL4A5. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000495:1-51. Detection Rate: East Asian 95%. X-linked Congenital Adrenal Hypoplasia - Gene: NR0B1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000475:1-2. Detection Rate: East Asian 99%.

X-linked Juvenile Retinoschisis - Gene: RS1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000330:1-6. Detection Rate: East Asian 98%. X-linked Myotubular Myopathy - Gene: MTM1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000252:2-15. Detection Rate: East Asian 99%.

X-linked Severe Combined Immunodeficiency - Gene: IL2RG. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000206:1-8. Detection Rate: East Asian >99%.

Xeroderma Pigmentosum Group A - Gene: XPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000380:1-6. Detection Rate: East Asian >99%.

Xeroderma Pigmentosum Group C - Gene: XPC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004628:1-16. Detection Rate: East Asian 97%.

FEMALE N/A

MALE DONOR 12635 DOB: The second seco

FEMALE N/A

Risk Calculations

Below are the risk calculations for all conditions tested. Since negative results do not completely rule out the possibility of being a carrier, the **residual risk** represents the patient's post-test likelihood of being a carrier and the **reproductive risk** represents the likelihood the patient's future children could inherit each disease. These risks are inherent to all carrier screening tests, may vary by ethnicity, are predicated on a negative family history and are present even after a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

†Indicates a positive result. See the full clinical report for interpretation and details.

Disease	DONOR 12635 Residual Risk	Reproductive Risk
11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia	1 in 3,300	< 1 in 1,000,000
6-pyruvoyl-tetrahydropterin Synthase Deficiency	1 in 35,000	< 1 in 1,000,000
ABCC8-related Familial Hyperinsulinism	1 in 14,000	< 1 in 1,000,000
Adenosine Deaminase Deficiency	1 in 39,000	< 1 in 1,000,000
·	NM 000517.4(HBA2):c.427T>C(*143Qext*31,	aka Hb
Alpha Thalassemia, HBA1/HBA2-related	Constant Spring) heterozygote †	Not calculated
	Alpha globin status: -a/aa.	
Alpha-mannosidosis	1 in 35,000	< 1 in 1,000,000
Alpha-sarcoglycanopathy	1 in 34,000	< 1 in 1,000,000
Alstrom Syndrome	< 1 in 50,000	< 1 in 1,000,000
AMT-related Glycine Encephalopathy	1 in 22,000	< 1 in 1,000,000
Andermann Syndrome	< 1 in 50,000	< 1 in 1,000,000
Argininemia	< 1 in 17,000	< 1 in 1,000,000
Argininosuccinic Aciduria	1 in 13,000	< 1 in 1,000,000
Aspartylglucosaminuria	< 1 in 50,000	< 1 in 1,000,000
Ataxia with Vitamin E Deficiency	< 1 in 50,000	< 1 in 1,000,000
Ataxia-telangiectasia	1 in 12,000	< 1 in 1,000,000
ATP7A-related Disorders	< 1 in 1,000,000	1 in 720,000
Autoimmune Polyglandular Syndrome Type 1	1 in 18,000	< 1 in 1,000,000
Autosomal Recessive Osteopetrosis Type 1	1 in 35,000	< 1 in 1,000,000
Autosomal Recessive Polycystic Kidney Disease, PKHD1-related	1 in 8,100	< 1 in 1,000,000
Autosomal Recessive Polycystic Ruley Disease, I Rid Prelated	<pre>< 1 in 44,000</pre>	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS1-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS10-related	< 1 in 50,000 <	< 1 in 1,000,000
Bardet-Biedi Syndrome, BBS10-related	< 1 in 50,000 <	< 1 in 1,000,000
Bardet-Biedi Syndrome, BBS2-related	< 1 in 50,000 <	< 1 in 1,000,000
BCS1L-related Disorders	< 1 in 50,000 <	< 1 in 1,000,000
Beta-sarcoglycanopathy	1 in 39,000	< 1 in 1,000,000
Biotinidase Deficiency	1 in 67,000	< 1 in 1,000,000
Bloom Syndrome	<pre>< 1 in 50,000</pre>	< 1 in 1,000,000
Calpainopathy	1 in 13,000	< 1 in 1,000,000
Canavan Disease	1 in 9,700	< 1 in 1,000,000
Carbamoylphosphate Synthetase I Deficiency	1 in 45,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase IA Deficiency	< 1 in 50,000 1 in 31,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase II Deficiency	<pre>< 1 in 50,000</pre>	< 1 in 1,000,000
Cartilage-hair Hypoplasia	•	< 1 in 1,000,000
Cerebrotendinous Xanthomatosis	NM_000784.3(CYP27A1):c.1017+1G>A hetero	,0
Citrullinemia Type 1	1 in 700	1 in 270,000
CLN3-related Neuronal Ceroid Lipofuscinosis	1 in 13,000	< 1 in 1,000,000
CLN5-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN6-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN8-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
Cohen Syndrome	< 1 in 15,000	< 1 in 1,000,000
COL4A3-related Alport Syndrome	1 in 11,000	< 1 in 1,000,000
COL4A4-related Alport Syndrome	1 in 21,000	< 1 in 1,000,000
Combined Pituitary Hormone Deficiency, PROP1-related	1 in 6,100	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP21A2-related	1 in 550	1 in 140,000
Congenital Disorder of Glycosylation Type la	1 in 16,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation Type Ic	< 1 in 50,000	< 1 in 1,000,000

MALE DONOR 12635 DOB:

Ethnicity: East Asian

DONOR 12635

Barcode: 11004512732134

FEMALE N/A

Residual Risk Reproductive Risk Disease Congenital Disorder of Glycosylation, MPI-related < 1 in 50.000 < 1 in 1,000,000 **Costeff Optic Atrophy Syndrome** < 1 in 50,000 < 1 in 1,000,000 **Cystic Fibrosis** 1 in 9.000 < 1 in 1.000.000 Cystinosis 1 in 22,000 < 1 in 1,000,000 **D-bifunctional Protein Deficiency** 1 in 9,000 < 1 in 1,000,000 < 1 in 1,000,000 Delta-sarcoglycanopathy < 1 in 40,000 Dihydrolipoamide Dehydrogenase Deficiency < 1 in 50.000 < 1 in 1,000,000 Dysferlinopathy 1 in 11,000 < 1 in 1,000,000 Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) Not calculated Not calculated ERCC6-related Disorders 1 in 26,000 < 1 in 1,000,000 **ERCC8-related Disorders** < 1 in 9,800 < 1 in 1,000,000 EVC-related Ellis-van Creveld Syndrome 1 in 7,500 < 1 in 1,000,000 EVC2-related Ellis-van Creveld Syndrome < 1 in 50,000 < 1 in 1,000,000 Fabry Disease < 1 in 1,000,000 1 in 80,000 Familial Dysautonomia < 1 in 50,000 < 1 in 1,000,000 Familial Mediterranean Fever < 1 in 50.000 < 1 in 1,000,000 Fanconi Anemia Complementation Group A 1 in 3,100 < 1 in 1,000,000 Fanconi Anemia, FANCC-related < 1 in 50,000 < 1 in 1,000,000 **FKRP-related Disorders** < 1 in 50,000 < 1 in 1,000,000 **FKTN-related** Disorders 1 in 110 1 in 40,000 < 1 in 30,000 < 1 in 1,000,000 Free Sialic Acid Storage Disorders Galactokinase Deficiency < 1 in 50,000 < 1 in 1,000,000 < 1 in 1,000,000 Galactosemia 1 in 32,000 Gamma-sarcoglycanopathy 1 in 3,200 < 1 in 1,000,000 Gaucher Disease 1 in 450 1 in 320,000 GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness 1 in 3,300 1 in 450,000 **GLB1-related Disorders** 1 in 19,000 < 1 in 1,000,000 **GLDC-related Glycine Encephalopathy** 1 in 2,800 < 1 in 1,000,000 Glutaric Acidemia, GCDH-related < 1 in 1,000,000 1 in 13,000 Glycogen Storage Disease Type la 1 in 18,000 < 1 in 1,000,000 Glycogen Storage Disease Type Ib 1 in 35,000 < 1 in 1,000,000 Glycogen Storage Disease Type III 1 in 16,000 < 1 in 1,000,000 **GNE** Myopathy < 1 in 50,000 < 1 in 1,000,000 **GNPTAB-related** Disorders 1 in 17,000 < 1 in 1,000,000 HADHA-related Disorders 1 in 25,000 < 1 in 1,000,000 Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell 1 in 5,000 1 in 990,000 Disease) Hereditary Fructose Intolerance 1 in 7,900 < 1 in 1,000,000 Herlitz Junctional Epidermolysis Bullosa, LAMB3-related < 1 in 50,000 < 1 in 1,000,000 Hexosaminidase A Deficiency (Including Tay-Sachs Disease) 1 in 30,000 < 1 in 1,000,000 HMG-CoA Lyase Deficiency < 1 in 33,000 < 1 in 1,000,000 Holocarboxylase Synthetase Deficiency < 1 in 1,000,000 1 in 16,000 Homocystinuria, CBS-related < 1 in 50,000 < 1 in 1,000,000 < 1 in 1,000,000 Hydrolethalus Syndrome < 1 in 50,000 Hypophosphatasia 1 in 19,000 < 1 in 1,000,000 Isovaleric Acidemia 1 in 39.000 < 1 in 1,000,000 Joubert Syndrome 2 < 1 in 50.000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMA3-related < 1 in 50,000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMC2-related < 1 in 50,000 < 1 in 1,000,000 KCNJ11-related Familial Hyperinsulinism 1 in 42,000 < 1 in 1,000,000 Krabbe Disease 1 in 17,000 < 1 in 1,000,000 LAMA2-related Muscular Dystrophy < 1 in 1,000,000 < 1 in 61,000 Leigh Syndrome, French-Canadian Type < 1 in 50,000 < 1 in 1,000,000 Lipoid Congenital Adrenal Hyperplasia 1 in 40,000 < 1 in 1,000,000 Lysosomal Acid Lipase Deficiency 1 in 30,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type Ia 1 in 49,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type Ib < 1 in 1,000,000 1 in 23,000 Maple Syrup Urine Disease Type II < 1 in 13,000 < 1 in 1,000,000 Medium Chain Acyl-CoA Dehydrogenase Deficiency 1 in 11.000 < 1 in 1,000,000 Megalencephalic Leukoencephalopathy with Subcortical Cysts < 1 in 50,000 < 1 in 1,000,000 Metachromatic Leukodystrophy 1 in 16,000 < 1 in 1,000,000 Methylmalonic Acidemia, cblA Type < 1 in 50,000 < 1 in 1,000,000

Disease

RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Jeffrey Olliffe NPI: 1306838271 Report Date: 09/24/2020 MALE DONOR 12635 DOB:

Ethnicity: East Asian

DONOR 12635

Residual Risk

Barcode: 11004512732134

FEMALE N/A

Reproductive Risk

< 1 in 1,000,000 Methylmalonic Acidemia, cblB Type < 1 in 50,000 Methylmalonic Aciduria and Homocystinuria, cblC Type 1 in 33,000 < 1 in 1,000,000 < 1 in 1,000,000 MKS1-related Disorders < 1 in 50.000 Mucolipidosis III Gamma < 1 in 50,000 < 1 in 1,000,000 Mucolipidosis IV < 1 in 50,000 < 1 in 1,000,000 Mucopolysaccharidosis Type I < 1 in 1,000,000 1 in 16,000 Mucopolysaccharidosis Type II 1 in 390,000 1 in 98,000 < 1 in 1,000,000 Mucopolysaccharidosis Type IIIA 1 in 16,000 Mucopolysaccharidosis Type IIIB 1 in 30,000 < 1 in 1,000,000 Mucopolysaccharidosis Type IIIC < 1 in 50.000 < 1 in 1,000,000 **MUT-related Methylmalonic Acidemia** 1 in 11,000 < 1 in 1,000,000 **MYO7A-related Disorders** 1 in 15,000 < 1 in 1,000,000 NEB-related Nemaline Myopathy 1 in 1,200 1 in 400,000 Nephrotic Syndrome, NPHS1-related < 1 in 50,000 < 1 in 1,000,000 Nephrotic Syndrome, NPHS2-related 1 in 35,000 < 1 in 1,000,000 Niemann-Pick Disease Type C1 < 1 in 1,000,000 1 in 17.000 Niemann-Pick Disease Type C2 < 1 in 50,000 < 1 in 1,000,000 Niemann-Pick Disease, SMPD1-related 1 in 25,000 < 1 in 1,000,000 Nijmegen Breakage Syndrome < 1 in 50,000 < 1 in 1,000,000 **Ornithine Transcarbamylase Deficiency** < 1 in 1.000.000 1 in 140,000 < 1 in 1,000,000 **PCCA-related Propionic Acidemia** 1 in 4,200 **PCCB-related Propionic Acidemia** 1 in 6,500 < 1 in 1,000,000 PCDH15-related Disorders 1 in 3,300 < 1 in 1,000,000 Pendred Syndrome 1 in 6,400 < 1 in 1,000,000 Peroxisome Biogenesis Disorder Type 1 1 in 16,000 < 1 in 1,000,000 Peroxisome Biogenesis Disorder Type 3 < 1 in 50,000 < 1 in 1,000,000 Peroxisome Biogenesis Disorder Type 4 1 in 9,300 < 1 in 1,000,000 Peroxisome Biogenesis Disorder Type 5 < 1 in 71,000 < 1 in 1,000,000 Peroxisome Biogenesis Disorder Type 6 < 1 in 1,000,000 < 1 in 50.000 Phenylalanine Hydroxylase Deficiency 1 in 7,700 < 1 in 1,000,000 **POMGNT-related Disorders** < 1 in 12,000 < 1 in 1,000,000 Pompe Disease 1 in 10,000 < 1 in 1,000,000 PPT1-related Neuronal Ceroid Lipofuscinosis 1 in 7,700 < 1 in 1,000,000 < 1 in 1,000,000 **Primary Carnitine Deficiency** 1 in 10.000 Primary Hyperoxaluria Type 1 1 in 13,000 < 1 in 1,000,000 Primary Hyperoxaluria Type 2 < 1 in 1,000,000 < 1 in 50.000 Primary Hyperoxaluria Type 3 1 in 20,000 < 1 in 1,000,000 Pycnodysostosis 1 in 43,000 < 1 in 1,000,000 Pyruvate Carboxylase Deficiency 1 in 25,000 < 1 in 1,000,000 Rhizomelic Chondrodysplasia Punctata Type 1 1 in 16,000 < 1 in 1,000,000 **RTEL1-related Disorders** < 1 in 50,000 < 1 in 1,000,000 Sandhoff Disease < 1 in 1,000,000 1 in 30,000 Short-chain Acyl-CoA Dehydrogenase Deficiency 1 in 9,700 < 1 in 1,000,000 Sjogren-Larsson Syndrome < 1 in 12,000 < 1 in 1,000,000 SLC26A2-related Disorders 1 in 16,000 < 1 in 1,000,000 < 1 in 1,000,000 Smith-Lemli-Opitz Syndrome < 1 in 50.000 < 1 in 1,000,000 Spastic Paraplegia Type 15 < 1 in 50,000 Negative for g.27134T>G SNP SMN1: 2 copies Spinal Muscular Atrophy 1 in 150,000 1 in 700 Spondylothoracic Dysostosis < 1 in 50,000 < 1 in 1,000,000 TGM1-related Autosomal Recessive Congenital Ichthyosis 1 in 22,000 < 1 in 1,000,000 **TPP1-related Neuronal Ceroid Lipofuscinosis** 1 in 30,000 < 1 in 1,000,000 Tyrosine Hydroxylase Deficiency < 1 in 50,000 < 1 in 1,000,000 Tyrosinemia Type I 1 in 16 000 < 1 in 1,000,000 Tyrosinemia Type II 1 in 25,000 < 1 in 1,000,000 **USH1C-related Disorders** 1 in 35,000 < 1 in 1,000,000 USH2A-related Disorders < 1 in 1,000,000 1 in 2,200 Usher Syndrome Type 3 1 in 41,000 < 1 in 1,000,000 Very-long-chain Acyl-CoA Dehydrogenase Deficiency 1 in 12,000 < 1 in 1,000,000 < 1 in 1,000,000 Wilson Disease 1 in 6,500 X-linked Adrenoleukodystrophy 1 in 170,000 1 in 80,000

MALE DONOR 12635 DOB: Ethnicity: East Asian Barcode: 11004512732134 FEMALE N/A

Disease	DONOR 12635 Residual Risk	Reproductive Risk
X-linked Alport Syndrome	Not calculated	Not calculated
X-linked Congenital Adrenal Hypoplasia	< 1 in 1,000,000	< 1 in 1,000,000
X-linked Juvenile Retinoschisis	< 1 in 1,000,000	1 in 50,000
X-linked Myotubular Myopathy	Not calculated	Not calculated
X-linked Severe Combined Immunodeficiency	< 1 in 1,000,000	1 in 200,000
Xeroderma Pigmentosum Group A	1 in 10,000	< 1 in 1,000,000
Xeroderma Pigmentosum Group C	1 in 7,300	< 1 in 1,000,000