

RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Jeffrey Olliffe 4915 25th Ave NE Ste 204W Seattle, WA 98105 Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 10/25/2021 MALE DONOR 12799 DOB: Ethnicity: South Asian Sample Type: EDTA Blood Date of Collection: 10/16/2021 Date Received: 10/18/2021 Date Tested: 10/23/2021 Barcode: 11004512875863 Accession ID: CSLLXPNFJXL94MU Indication: Egg or sperm donor FEMALE N/A

POSITIVE: CARRIER

Foresight® Carrier Screen

ABOUT THIS TEST

The **Myriad Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	DONOR 12799	Partner
Panel Information	Foresight Carrier Screen Universal Panel Fundamental Plus Panel Fundamental Panel (175 conditions tested)	N/A
positive: carrier Cystic Fibrosis	€ CARRIER* NM_000492.3(CFTR):c.3209G>A (R1070Q) heterozygote [†]	The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps".
Reproductive Risk: 1 in 400 Inheritance: Autosomal Recessive		

†Likely to have a negative impact on gene function.

*Carriers generally do not experience symptoms.

No disease-causing mutations were detected in any other gene tested. A complete list of all conditions tested can be found on page 7.

CLINICAL NOTES

• None

NEXT STEPS

- Carrier testing should be considered for the diseases specified above for the patient's partner.
- Patients are recommended to discuss reproductive risks with their health care provider or a genetic counselor. Patients may also wish to discuss any positive results with blood relatives, as there is an increased chance that they are also carriers.

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863 FEMALE N/A

positive: carrier Cystic Fibrosis

Reproductive risk: 1 in 400 Risk before testing: 1 in 40,000

Gene: CFTR | Inheritance Pattern: Autosomal Recessive

Patient	DONOR 12799	No partner tested
Result	Carrier	N/A
Variant(s)	NM_000492.3(CFTR):c.3209G>A(R1070Q) heterozygote [†]	N/A
Methodology	Sequencing with copy number analysis (v3.1)	N/A
Interpretation	This individual is a carrier of cystic fibrosis. Carriers generally do not experience symptoms. R1070Q is associated with a broad spectrum of disease, ranging from clinically asymptomatic to classic cystic fibrosis. Disease phenotype is dependent on, but not necessarily predicted by, the combination of mutations inherited.	N/A
Detection rate	>99%	N/A
Exons tested	NM_000492:1-27.	N/A

†Likely to have a negative impact on gene function.

What Is Cystic Fibrosis?

Cystic Fibrosis (CF) is an inherited condition characterized by the production of abnormally thick, sticky mucus, particularly in the lungs and digestive system. While it is normal to have mucus lining the organs of the respiratory, digestive, and reproductive systems in order to lubricate and protect them, in individuals with CF this mucus is thick and sticky. This abnormal mucus results in the clogging and obstructing of various systems in the body. CF is a chronic condition that worsens over time. CF is caused by mutations in the *CFTR* gene.

Most individuals with CF experience breathing problems and frequent lung infections that lead to permanent lung damage such as scarring (fibrosis) and sac-like growths (cysts). The pancreas, an organ that produces insulin and digestive enzymes, is often affected by CF. The sticky mucus caused by CF can block ducts which ferry enzymes from the pancreas to the rest of the body, resulting in problems such as diarrhea, malnutrition, and poor growth. Infertility, particularly in men, and delayed puberty are also common among people with CF.

The severity of symptoms varies from person to person, even among individuals with the same mutations. Most cases of CF are diagnosed in early childhood. However, in general, individuals with two classic mutations are more likely to have a severe form of the disease including problems with the pancreas, while individuals with one classic and one non-classic or individuals with two non-classic mutations are more likely to have a milder form of the condition and may avoid problems with the pancreas.

Mutations in the same gene that causes CF can result in a condition in males called congenital absence of the vas deferens (CAVD). In CAVD, the vas deferens (a reproductive organ involved in sperm transport) is improperly formed, leading to infertility.

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863

FEMALE N/A

How Common Is Cystic Fibrosis?

According to the National Institutes of Health, CF is the most common deadly inherited condition among Caucasians in the United States, with a prevalence of 1 in 3000 in individuals of Caucasian or Ashkenazi Jewish descent. CF is rarer in other groups. The prevalence is 1 in 8,300 in Hispanics, 1 in 17,000 in African Americans, and 1 in 30,000 in Asians.

How Is Cystic Fibrosis Treated?

FDA approved medications are available for individuals with certain *CFTR* mutations. There are also many other options for treating the symptoms in everyone with CF, regardless of the mutation present. Because thick mucus can build up in the respiratory system, it is important to keep the patient's airways open in order to ease breathing and prevent infection. This can be accomplished with various prescription drugs as well as by physically loosening mucus by pounding on the patient's back in a prescribed way. This treatment, known as "postural drainage and chest percussion" must be performed by someone other than the affected person, and is typically done at least once daily. As respiratory infections occur, physicians typically prescribe antibiotics.

Physicians will also monitor the digestive system to ensure that the patient is getting proper nutrition. Enzymes or vitamin supplements may be prescribed. Both the respiratory and digestive systems of an individual with CF must be monitored regularly by a medical team.

Surgery may be needed to correct certain problems caused by CF and lung transplants are an option for some individuals.

What Is the Prognosis for an Individual with Cystic Fibrosis?

Thanks to improved treatments and a better understanding of the condition, the average life expectancy for individuals with CF who live to adulthood is near 40 years. Children born with CF today who receive early treatment may live even longer.

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863

FEMALE N/A

Methods and Limitations

DONOR 12799 [Foresight Carrier Screen]: Sequencing with copy number analysis, spinal muscular atrophy, analysis of homologous regions, and alpha thalassemia (HBA1/ HBA2) sequencing with targeted copy number analysis (Assay(s): DTS v3.2).

Sequencing with copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to analyze the genes listed in the Conditions Tested section of the report. Except where otherwise noted, the region of interest (ROI) comprises the indicated coding regions and 20 non-coding bases flanking each region. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected non-coding bases are excluded from the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. Select genes or regions for which pseudogenes or other regions of homology impede reliable variant detection may be assayed using alternate technology, or they may be excluded from the ROI. *CFTR* and *DMD* testing includes analysis for exon-level deletions and duplications with an average sensitivity of ~99%. Only exon-level deletions are assayed for other genes on the panel and such deletions are detected with a sensitivity of ≥75%. Selected founder deletions may be detected at slightly higher sensitivity. Affected exons and/or breakpoints of copy number variant are provided in the variant nomenclature. In some cases, the copy number variant may be larger or smaller than indicated. If *GJB2* is tested, large upstream deletions involving the *GJB6* and/or *CRYL1* genes that may affect the expression of *GJB2* are also analyzed.

Spinal muscular atrophy

Targeted copy number analysis via high-throughput sequencing is used to determine the copy number of exon 7 of the *SMN1* gene. Other genetic variants may interfere with this analysis. Some individuals with two copies of *SMN1* are "silent" carriers with both *SMN1* genes on one chromosome and no copies of the gene on the other chromosome. This is more likely in individuals who have two copies of the *SMN1* gene and are positive for the g.27134T>G single-nucleotide polymorphism (SNP) (PMID: 9199562, 23788250, and 28676062), which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have two copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read-depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss-of-function variants in certain genes that have homology to other genomic regions. The precise breakpoints of large deletions in these genes cannot be determined but are instead estimated from copy number analysis. Pseudogenes may interfere with this analysis, especially when many pseudogene copies are present.

If *CYP21A2* is tested, patients who have one or more additional copies of the *CYP21A2* gene and a pathogenic variant may or may not be a carrier of 21-hydroxylase deficient CAH, depending on the chromosomal location of the variants (phase). Benign *CYP21A2* gene duplications and/or triplications will only be reported in this context. Some individuals with two functional *CYP21A2* gene copies may be "silent" carriers, with two gene copies resulting from a duplication on one chromosome and a gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay. Given that the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are based only on the published incidence for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate for CAH, especially in the aforementioned populations, as they do not account for non-classic CAH.

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863

FEMALE N/A

Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to identify sequence variation and functional gene copies within the region of interest (ROI) of *HBA1* and *HBA2*, which includes the listed exons plus 20 intronic flanking bases. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. For large deletions or duplications in these genes, the precise breakpoints cannot be determined but are instead estimated from copy number analysis. This assay has been validated to detect up to two additional copies of each alpha globin gene. In rare instances where assay results suggest greater than two additional copies are present, this will be noted but the specific number of gene copies observed will not be provided.

Extensive sequence homology exists between *HBA1* and *HBA2*. This sequence homology can prevent certain variants from being localized to one gene over the other. In these instances, variant nomenclature will be provided for both genes. If follow-up testing is indicated for patients with the nomenclature provided for both genes, both *HBA1* and *HBA2* should be tested. Some individuals with four functional alpha globin gene copies may be "silent" carriers, with three gene copies resulting from triplication on one chromosome and a single gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay.

Interpretation of reported variants

The classification and interpretation of all variants identified in this assay reflects the current state of Myriad's scientific understanding at the time this report was issued. Variants are classified according to internally defined criteria, which are compatible with the ACMG Standards and Guidelines for the Interpretation of Sequence Variants (PMID: 25741868). Variants that have been determined by Myriad to be disease-causing or likely disease-causing (i.e. pathogenic or likely pathogenic) are reported. Benign variants, variants of uncertain clinical significance (VUS), and variants not directly associated with the specified disease phenotype(s) are not reported. Variant classification and interpretation may change for a variety of reasons, including but not limited to, improvements to classification techniques, availability of additional scientific information, and observation of a variant in more patients. If the classification of one or more variants identified in this patient changes, an updated report reflecting the new classification generally will not be issued. If an updated report is issued, the variants reported may change based on their current classification. This can include changes to the variants displayed in gene specific 'variants tested' sections. Healthcare providers may contact Myriad directly to request updated variant classification information specific to this test result.

Limitations

The MWH Foresight Carrier Screen is designed to detect and report germline (constitutional) alterations. Mosaic (somatic) variation may not be detected, and if it is detected, it may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes (phase). This test is not designed to detect sex-chromosome copy number variations. If present, sex-chromosome abnormalities may significantly reduce test sensitivity for X-linked conditions. Variant interpretation and residual and reproductive risk estimations assume a normal karyotype and may be different for individuals with abnormal karyotypes. The test does not fully address all inherited forms of intellectual disability, birth defects, or heritable diseases. Furthermore, not all forms of genetic variation are detected by this assay (i.e., duplications [except in specified genes], chromosomal rearrangements, structural abnormalities, etc.). Additional testing may be appropriate for some individuals. Pseudogenes and other regions of homology may interfere with this analysis. In an unknown number of cases, other genetic variation may interfere with variant detection. Rare carrier states where complementary changes exist between the chromosomes may not be detected by the assay. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions, and technical or analytical errors.

Detection rates are determined using published scientific literature and/or reputable databases, when available, to estimate the fraction of disease alleles, weighted by frequency, that the methodology is predicted to be able or unable to detect. Detection rates are approximate and only account for analytical sensitivity. Certain variants that have been previously described in the literature may not be reported, if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease specific rates of *de novo* variation.

This test was developed, and its performance characteristics determined by, Myriad Women's Health, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: #05D1102604.

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863

FEMALE N/A

Incidental Findings

Unless otherwise indicated, these results and interpretations are limited to the specific disease panel(s) requested by the ordering healthcare provider. In some cases, standard data analyses may identify genetic findings beyond the region(s) of interest specified by the test, and such findings may not be reported. These findings may include genomic abnormalities with major, minor, or no, clinical significance.

If you have questions or would like more information about any of the test methods or limitations, please contact (888) 268-6795.

Resources

GENOME CONNECT | http://www.genomeconnect.org

Patients can share their reports using research registries such as Genome Connect, an online research registry building a genetics and health knowledge base. Genome Connect provides patients, physicians, and researchers an opportunity to share genetic information to support the study of the impact of genetic variation on health conditions.

SENIOR LABORATORY DIRECTOR

Kenter R. Boules

Karla R. Bowles, PhD, FACMG, CGMB

Report content approved by Karla Bowles, PhD, FACMG, CGMB on Oct 25, 2021

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863 FEMALE N/A

Conditions Tested

6-pyruvoyl-tetrahydropterin Synthase Deficiency - Gene: PTS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000317:1-6. Detection Rate: South Asian >99%.

Adenosine Deaminase Deficiency - Gene: ADA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000022:1-12. Detection Rate: South Asian 98%.

Alpha Thalassemia, HBA1/HBA2-related - Genes: HBA1, HBA2. Autosomal Recessive. Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis. Exons: NM_000517:1-3; NM_000558:1-3. Variants (16): -(alpha)20.5, --BRIT, --MEDI, --MEDII, --SEA, --THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, Poly(A) AATAAA>AATA-, Poly(A) AATAAA>AATAAG, Poly(A) AATAAA>AATGAA, anti3.7, anti4.2, del HS-40. Detection Rate: South Asian >99%.

Alpha-mannosidosis - Gene: MAN2B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000528:1-23. Detection Rate: South Asian >99%. Alpha-sarcoglycanopathy - Gene: SGCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000023:1-9. Detection Rate: South Asian >99%. Alstrom Syndrome - Gene: ALMS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015120:1-23. Detection Rate: South Asian >99%. Andermann Syndrome - Gene: SLC12A6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133647:1-25. Detection Rate: South Asian >99%. Argininemia - Gene: ARG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000045:1-8. Detection Rate: South Asian 97%.

Argininosuccinic Aciduria - Gene: ASL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001024943:1-16. Detection Rate: South Asian >99%. Aspartylglucosaminuria - Gene: AGA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000027:1-9. Detection Rate: South Asian >99%. Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000370:1-5. Detection Rate: South Asian >99%.

Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000051:2-63. Detection Rate: South Asian 96%. ATP7A-related Disorders - Gene: ATP7A. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000052:2-23. Detection Rate: South Asian 90%. Autoimmune Polyglandular Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000383:1-14. Detection Rate: South Asian >99%

Autosomal Recessive Osteopetrosis Type 1 - Gene: TCIRG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006019:2-20. Detection Rate: South Asian 96%.

Autosomal Recessive Polycystic Kidney Disease, PKHD1-related - Gene: PKHD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138694 2-67. Detection Rate: South Asian >99%.

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay - Gene: SACS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014363 2-10. Detection Rate: South Asian 99%.

Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024649:1-17. Detection Rate: South Asian >99%.

Bardet-Biedl Syndrome, BBS10-related - Gene: BBS10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_024685:1-2. **Detection Rate:** South Asian >99%.

Bardet-Biedl Syndrome, BBS12-related - Gene: BBS12. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_152618:2. Detection Rate: South Asian >99%.

Bardet-Biedl Syndrome, BBS2-related - Gene: BBS2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_031885:1-17. Detection Rate: South Asian >99%. BCS1L-related Disorders - Gene: BCS1L. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004328:3-9. Detection Rate: South Asian >99%.
Beta-sarcoglycanopathy - Gene: SGCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000232:1-6. Detection Rate: South Asian >99%.
Biotinidase Deficiency - Gene: BTD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000060:1-4. Detection Rate: South Asian >99%.
Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000057:2-22. Detection Rate: South Asian >99%.
Calpainopathy - Gene: CAPN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000070:1-24. Detection Rate: South Asian 99%.
Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000049:1-6. Detection Rate: South Asian 98%.
Carbamoylphosphate Synthetase I Deficiency - Gene: CPS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000049:1-6. Detection Rate: South Asian 98%.

Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001876:2-19. Detection Rate: South Asian >99%.

Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000098:1-5. Detection Rate: South Asian >99%.

Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NR_003051:1. Detection Rate: South Asian >99%. Cerebrotendinous Xanthomatosis - Gene: CYP27A1. Autosomal Recessive.

Sequencing with copy number analysis. Exons: NM_000784:1-9. Detection Rate: South Asian >99%.

Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000050:3-16. Detection Rate: South Asian >99%. CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001042432 2-16. Detection Rate: South Asian >99%.

CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006493:1-4. Detection Rate: South Asian >99%.

CLN8-related Neuronal Ceroid Lipofuscinosis - Gene: CLN8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_018941:2-3. Detection Rate: South Asian >99%.

Cohen Syndrome - Gene: VPS13B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017890:2-62. Detection Rate: South Asian 97%. COL4A3-related Alport Syndrome - Gene: COL4A3. Autosomal Recessive.

Sequencing with copy number analysis. Exons: NM_000091:1-52. Detection Rate: South Asian 94%.

COL4A4-related Alport Syndrome - Gene: COL4A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000092:2-48. **Detection Rate:** South Asian >99%.

Combined Pituitary Hormone Deficiency, PROP1-related - Gene: PROP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006261:1-3. Detection Rate: South Asian >99%.

Congenital Adrenal Hyperplasia, CYP11B1-related - Gene: CYP11B1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000497:1-9. **Detection Rate:** South Asian 97%.

Congenital Adrenal Hyperplasia, CYP21A2-related - Gene: CYP21A2. Autosomal Recessive. Analysis of homologous regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V282L, [I237N;V238E;M240K], c.293-13C>G. Detection Rate: South Asian 88%.

Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000303:1-8. Detection Rate: South Asian >99%.

Congenital Disorder of Glycosylation Type Ic - Gene: ALG6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_013339:2-15. **Detection Rate:** South Asian >99%.

Congenital Disorder of Glycosylation, MPI-related - Gene: MPI. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002435:1-8. Detection Rate: South Asian >99%.

Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_025136:1-2. **Detection Rate:** South Asian >99%.

Cystic Fibrosis - Gene: CFTR. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. **Detection Rate:** South Asian >99%.

Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004937:3-12. **Detection Rate:** South Asian >99%.

D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000414:1-24. Detection Rate: South Asian 98%.

Delta-sarcoglycanopathy - **Gene:** SGCD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000337:2-9. **Detection Rate:** South Asian 96%. **Dihydrolipoamide Dehydrogenase Deficiency** - **Gene:** DLD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000108:1-14. **Detection Rate:** South Asian >99%.

Dysferlinopathy - Gene: DYSF. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003494:1-55. Detection Rate: South Asian 98%.

Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) - Gene: DMD. X-linked Recessive. Sequencing with copy number analysis. **Exons:**

NM_004006:1-79. Detection Rate: South Asian 99%.

ERCC6-related Disorders - Gene: ERCC6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000124:2-21. Detection Rate: South Asian 96%. ERCC8-related Disorders - Gene: ERCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000082:1-12. Detection Rate: South Asian 97%. EVC-related Ellis-van Creveld Syndrome - Gene: EVC. Autosomal Recessive.

Sequencing with copy number analysis. Exons: NM_153717:1-21. Detection Rate: South Asian 96%.

EVC2-related Ellis-van Creveld Syndrome - Gene: EVC2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_147127:1-22. **Detection Rate:** South Asian 98%.

Fabry Disease - Gene: GLA. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000169:1-7. Detection Rate: South Asian 98%.

Familial Dysautonomia - Gene: ELP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003640:2-37. Detection Rate: South Asian >99%.
 Familial Hyperinsulinism, ABCC8-related - Gene: ABCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000352:1-39. Detection Rate: South Asian >99%.

Familial Hyperinsulinism, KCNJ11-related - Gene: KCNJ11. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000525:1. Detection Rate: South Asian >99%.

Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000243:1-10. Detection Rate: South Asian >99%.

Fanconi Anemia Complementation Group A - Gene: FANCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000135:1-43. Detection Rate: South Asian 92%.

Fanconi Anemia, FANCC-related - Gene: FANCC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000136:2-15. Detection Rate: South Asian >99%.

FKRP-related Disorders - Gene: FKRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_024301:4. Detection Rate: South Asian >99%.
FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001079802:3-11. Detection Rate: South Asian >99%.
Free Sialic Acid Storage Disorders - Gene: SLC17A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012434:1-11. Detection Rate: South Asian 98%.

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863

Galactokinase Deficiency - Gene: GALK1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000154:1-8. Detection Rate: South Asian >99%. Galactosemia - Gene: GALT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000155:1-11. Detection Rate: South Asian >99%.

FEMALE

N/A

Gamma-sarcoglycanopathy - Gene: SGCG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000231:2-8. Detection Rate: South Asian 87%. Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of homologous regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: South Asian 60%.

GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness - Gene: GJB2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM 004004:1-2. Detection Rate: South Asian >99%.

GLB1-related Disorders - Gene: GLB1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000404:1-16. Detection Rate: South Asian >99%. GLDC-related Glycine Encephalopathy - Gene: GLDC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000170:1-25. Detection Rate:

South Asian 94%. Glutaric Acidemia, GCDH-related - Gene: GCDH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000159:2-12. Detection Rate:

South Asian >99%. Glycine Encephalopathy, AMT-related - Gene: AMT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000481:1-9. Detection Rate: South Asian >99%.

Glycogen Storage Disease Type la - Gene: G6PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000151:1-5. **Detection Rate:** South Asian >99%.

Glycogen Storage Disease Type Ib - Gene: SLC37A4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001164277 3-11. Detection Rate: South Asian >99%.

Glycogen Storage Disease Type III - Gene: AGL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000642:2-34. Detection Rate: South Asian >99%.

GNE Myopathy - Gene: GNE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001128227:1-12. Detection Rate: South Asian >99%.

GNPTAB-related Disorders - Gene: GNPTAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024312:1-21. Detection Rate: South Asian >99%.

HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000182:1-20. Detection Rate: South Asian >99%. Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000518:1-3. Detection Rate: South Asian >99%.

Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000035:2-9. Detection Rate: South Asian >99%.

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000520:1-14. Detection Rate: South Asian >99%.

HMG-CoA Lyase Deficiency - Gene: HMGCL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000191:1-9. Detection Rate: South Asian >99%.

Holocarboxylase Synthetase Deficiency - Gene: HLCS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000411:4-12. Detection Rate: South Asian >99%.

Homocystinuria, CBS-related - Gene: CBS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000071:3-17. Detection Rate: South Asian >99%. Hydrolethalus Syndrome - Gene: HYLS1. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_145014:4. Detection Rate: South Asian >99%. Hypophosphatasia - Gene: ALPL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000478:2-12. Detection Rate: South Asian >99%. Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002225:1-12. Detection Rate: South Asian >99%.

Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001173990:1-5. Detection Rate: South Asian >99%.

Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000227:1-38. Detection Rate: South Asian >99%.

Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000228:2-23. Detection Rate: South Asian >99%.

Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005562:1-23. Detection Rate: South Asian >99%.

Krabbe Disease - Gene: GALC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000153:1-17. Detection Rate: South Asian >99%. Leigh Syndrome, French-Canadian Type - Gene: LRPPRC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133259:1-38. Detection Rate: South Asian >99%.

Lipoid Congenital Adrenal Hyperplasia - Gene: STAR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000349:1-7. Detection Rate: South Asian >99%.

Lysosomal Acid Lipase Deficiency - Gene: LIPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000235:2-10. Detection Rate: South Asian 98%.

Maple Syrup Urine Disease Type Ia - Gene: BCKDHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000709:1-9. Detection Rate: South Asian >99%.

Maple Syrup Urine Disease Type Ib - Gene: BCKDHB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_183050:1-10. Detection Rate: South Asian >99%.

Maple Syrup Urine Disease Type II - Gene: DBT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001918:1-11. Detection Rate: South Asian 97%.

Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000016:1-12. Detection Rate: South Asian >99%.

Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015166 2-12. Detection Rate: South Asian >99%.

Metachromatic Leukodystrophy - Gene: ARSA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000487:1-8. Detection Rate: South Asian >99%.

Methylmalonic Acidemia, cblA Type - Gene: MMAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_172250:2-7. Detection Rate: South Asian >99%.

Methylmalonic Acidemia, cblB Type - Gene: MMAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_052845:1-9. Detection Rate: South Asian >99%.

Methylmalonic Aciduria and Homocystinuria, cblC Type - Gene: MMACHC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015506:1-4. Detection Rate: South Asian >99%.

MKS1-related Disorders - Gene: MKS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017777:1-18. Detection Rate: South Asian >99%. Mucolipidosis III Gamma - Gene: GNPTG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032520:1-11. Detection Rate: South Asian 98%. Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_020533:1-14. Detection Rate: South Asian >99%. Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000203:1-14. Detection Rate: South Asian >99%. >99%.

Mucopolysaccharidosis Type II - Gene: IDS. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000202:1-9. Detection Rate: South Asian 89%.

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863

Mucopolysaccharidosis Type IIIA - Gene: SGSH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000199:1-8. Detection Rate: South Asian >99%.

FEMALE

N/A

Mucopolysaccharidosis Type IIIB - Gene: NAGLU. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000263:1-6. Detection Rate: South Asian >99%.

Mucopolysaccharidosis Type IIIC - Gene: HGSNAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_152419:1-18. Detection Rate: South Asian >99%.

Muscular Dystrophy, LAMA2-related - Gene: LAMA2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000426:1-43,45-65. Detection Rate: South Asian 98%.

MUT-related Methylmalonic Acidemia - Gene: MUT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000255:2-13. Detection Rate: South Asian >99%.

MYO7A-related Disorders - Gene: MYO7A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000260:2-49. Detection Rate: South Asian >99%. NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001271208:3-80,117-183. Detection Rate: South Asian 92%.

Nephrotic Syndrome, NPHS1-related - Gene: NPHS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004646:1-29. Detection Rate: South Asian >99%.

Nephrotic Syndrome, NPHS2-related - Gene: NPHS2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_014625:1-8. **Detection Rate:** South Asian >99%.

Neuronal Ceroid Lipofuscinosis, CLN6-related - Gene: CLN6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017882:1-7. Detection Rate: South Asian >99%.

Niemann-Pick Disease Type C1 - Gene: NPC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000271:1-25. Detection Rate: South Asian >99%.

Niemann-Pick Disease Type C2 - Gene: NPC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006432:1-5. Detection Rate: South Asian >99%.

Niemann-Pick Disease, SMPD1-related - Gene: SMPD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000543:1-6. Detection Rate: South Asian >99%.

Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002485:1-16. Detection Rate: South Asian >99%.

Ornithine Transcarbamylase Deficiency - Gene: OTC. X-linked Recessive. Sequencing with copy number analysis. **Exons:** NM_000531:1-10. **Detection Rate:** South Asian 97%.

PCCA-related Propionic Acidemia - Gene: PCCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000282:1-24. Detection Rate: South Asian 95%.

PCCB-related Propionic Acidemia - Gene: PCCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000532:1-15. Detection Rate: South Asian >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_033056:2-33. Detection Rate: South Asian 93%.

Pendred Syndrome - Gene: SLC26A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000441:2-21. **Detection Rate:** South Asian >99%.

Peroxisome Biogenesis Disorder Type 1 - Gene: PEX1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000466:1-24. **Detection Rate:** South Asian >99%.

Peroxisome Biogenesis Disorder Type 3 - Gene: PEX12. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000286:1-3. **Detection Rate:** South Asian >99%.

Peroxisome Biogenesis Disorder Type 4 - Gene: PEX6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000287:1-17. Detection Rate: South Asian 97%

Peroxisome Biogenesis Disorder Type 5 - Gene: PEX2. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000318:4. Detection Rate: South Asian >99%

Peroxisome Biogenesis Disorder Type 6 - Gene: PEX10. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_153818:1-6. Detection Rate: South Asian >99%

Phenylalanine Hydroxylase Deficiency - Gene: PAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000277:1-13. Detection Rate: South Asian >99%

POMGNT-related Disorders - Gene: POMGNT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017739:2-22. Detection Rate: South Asian 96%

Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with copy number analysis Exons: NM 000152.2-20 Detection Rate: South Asian >99%

PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000310:1-9. Detection Rate: South Asian >99%

Primary Carnitine Deficiency - Gene: SLC22A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003060:1-10. Detection Rate: South Asian >99%

Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000030:1-11. Detection Rate: South Asian >99%

Primary Hyperoxaluria Type 2 - Gene: GRHPR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012203:1-9. Detection Rate: South Asian >99%

Primary Hyperoxaluria Type 3 - Gene: HOGA1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138413:1-7. Detection Rate: South Asian >99%

Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000396:2-8. Detection Rate: South Asian >99%. Pyruvate Carboxylase Deficiency - Gene: PC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000920:3-22. Detection Rate: South Asian >99%

Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000288:1-10. Detection Rate: South Asian >99%

RTEL1-related Disorders - Gene: RTEL1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032957:2-35. Detection Rate: South Asian >99%. Sandhoff Disease - Gene: HEXB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000521:1-14. Detection Rate: South Asian 98%. Short-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000017:1-10. Detection Rate: South Asian >99%.

Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000382:1-10. Detection Rate: South Asian 96%

SLC26A2-related Disorders - Gene: SLC26A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000112:2-3. Detection Rate: South Asian >99%

Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001360:3-9. Detection Rate: South Asian >99%.

MALE **DONOR 12799** DOB: Ethnicity: South Asian Barcode: 11004512875863

Spastic Paraplegia Type 15 - Gene: ZFYVE26. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015346:2-42. Detection Rate: South Asian >99%

FEMALE

N/A

Spinal Muscular Atrophy - Gene: SMN1. Autosomal Recessive. Spinal muscular atrophy. Variant (1): SMN1 copy number. Detection Rate: South Asian 93%. Spondylothoracic Dysostosis - Gene: MESP2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001039958:1-2. Detection Rate: South Asian >99%

TGM1-related Autosomal Recessive Congenital Ichthyosis - Gene: TGM1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000359 2-15. Detection Rate: South Asian >99%.

TPP1-related Neuronal Ceroid Lipofuscinosis - Gene: TPP1, Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000391:1-13. Detection Rate: South Asian >99%

Tyrosine Hydroxylase Deficiency - Gene: TH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_199292:1-14. Detection Rate: South Asian >99%

Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000137:1-14. Detection Rate: South Asian >99%. Tyrosinemia Type II - Gene: TAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000353:2-12. Detection Rate: South Asian >99%. USH1C-related Disorders - Gene: USH1C, Autosomal Recessive, Sequencing with copy number analysis. Exons: NM_005709:1-21. Detection Rate: South Asian >99%. USH2A-related Disorders - Gene: USH2A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_206933:2-72. Detection Rate: South Asian 98%. Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM 174878:1-3. Detection Rate: South Asian >99%. Very-long-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000018:1-20. Detection Rate: South Asian >99%.

Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000053:1-21. Detection Rate: South Asian >99%. X-linked Adrenal Hypoplasia Congenita - Gene: NR0B1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000475:1-2. Detection Rate: South Asian 97%

X-linked Adrenoleukodystrophy - Gene: ABCD1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000033:1-6. Detection Rate: South Asian 77%.

X-linked Alport Syndrome - Gene: COL4A5. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000495:1-51. Detection Rate: South Asian 96%. X-linked Juvenile Retinoschisis - Gene: RS1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000330:1-6. Detection Rate: South Asian 98%. X-linked Myotubular Myopathy - Gene: MTM1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000252:2-15. Detection Rate: South Asian 96%.

X-linked Severe Combined Immunodeficiency - Gene: IL2RG. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000206:1-8. Detection Rate: South Asian >99%.

Xeroderma Pigmentosum Group A - Gene: XPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000380:1-6. Detection Rate: South Asian >99%

Xeroderma Pigmentosum Group C - Gene: XPC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004628:1-16. Detection Rate: South Asian 97%

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863

FEMALE N/A

Risk Calculations

Below are the risk calculations for all conditions tested. Negative results do not rule out the possibility of being a carrier. Residual risk is an estimate of each patient's posttest likelihood of being a carrier, while the reproductive risk represents an estimated likelihood that the patients' future children could inherit each disease. These risks are inherent to all carrier-screening tests, may vary by ethnicity, are predicated on a negative family history, and are present even given a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. In addition, average carrier rates are estimated using incidence or prevalence data from published scientific literature and/or reputable databases, where available, and are incorporated into residual risk calculations for each population/ethnicity. When population-specific data is not available for a condition, average worldwide incidence or prevalence is used. Further, incidence and prevalence data are only collected for the specified phenotypes (which include primarily the classic or severe forms of disease) and may not include alternate or milder disease manifestations associated with the gene. Actual incidence rates, prevalence rates, and carrier rates, and therefore actual residual risks, may be higher or lower than the estimates provided. Carrier rates, incidence/prevalence, and/or residual risks are not provided for some genes with biological or heritable properties that would make these estimates inaccurate. A '†' symbol indicates a positive result. See the full clinical report for interpretation and details. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

Disease	DONOR 12799 Residual Risk	Reproductive Risk
6-pyruvoyl-tetrahydropterin Synthase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Adenosine Deaminase Deficiency	1 in 22,000	< 1 in 1,000,000
Alpha Thalassemia, HBA1/HBA2-related	Alpha globin status: aa/aa.	Not calculated
Alpha-mannosidosis	1 in 35,000	< 1 in 1,000,000
Alpha-sarcoglycanopathy	1 in 34,000	< 1 in 1,000,000
Alstrom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Andermann Syndrome	< 1 in 50,000	< 1 in 1,000,000
Argininemia	1 in 12,000	< 1 in 1,000,000
Argininosuccinic Aciduria	1 in 13,000	< 1 in 1,000,000
Aspartylglucosaminuria	< 1 in 50,000	< 1 in 1,000,000
Ataxia with Vitamin E Deficiency	< 1 in 50,000	< 1 in 1,000,000
Ataxia-telangiectasia	1 in 4,200	< 1 in 1,000,000
ATP7A-related Disorders	1 in 800,000	1 in 150,000
Autoimmune Polyglandular Syndrome Type 1	1 in 18,000	< 1 in 1,000,000
Autosomal Recessive Osteopetrosis Type 1	1 in 8,900	< 1 in 1,000,000
Autosomal Recessive Polycystic Kidney Disease, PKHD1-related	1 in 8,100	< 1 in 1,000,000
Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay	< 1 in 44,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS1-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS10-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS12-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS2-related	< 1 in 50,000	< 1 in 1,000,000
BCS1L-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Beta-sarcoglycanopathy	1 in 39,000	< 1 in 1,000,000
Biotinidase Deficiency	1 in 17,000	1 in 990,000
Bloom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Calpainopathy	1 in 11,000	< 1 in 1,000,000
Canavan Disease	1 in 9,700	< 1 in 1,000,000
Carbamoylphosphate Synthetase I Deficiency	< 1 in 57,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase IA Deficiency	< 1 in 50,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase II Deficiency	1 in 18,000	< 1 in 1,000,000
Cartilage-hair Hypoplasia	< 1 in 50,000	< 1 in 1,000,000
Cerebrotendinous Xanthomatosis	1 in 11,000	< 1 in 1,000,000
Citrullinemia Type 1	1 in 12,000	< 1 in 1,000,000
CLN3-related Neuronal Ceroid Lipofuscinosis	1 in 13,000	< 1 in 1,000,000
CLN5-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN8-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
Cohen Syndrome	< 1 in 15,000	< 1 in 1,000,000
COL4A3-related Alport Syndrome	1 in 5,800	< 1 in 1,000,000
COL4A4-related Alport Syndrome	1 in 35,000	< 1 in 1,000,000
Combined Pituitary Hormone Deficiency, PROP1-related	1 in 6,100	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP11B1-related	1 in 8,400	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP21A2-related	1 in 530	1 in 130,000
Congenital Disorder of Glycosylation Type Ia	1 in 16,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation Type Ic	< 1 in 50,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation, MPI-related	< 1 in 50,000	< 1 in 1,000,000

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863 FEMALE

N/A

Disease	DONOR 12799 Residual Risk	Reproductive Risk
	< 1 in 50,000	< 1 in 1,000,000
	NM_000492.3(CFTR):c.3209G>A(R1070Q) heterozygote	< 1 In 1,000,000
Cystic Fibrosis	t	1 in 400
Cystinosis	1 in 22,000	< 1 in 1,000,000
D-bifunctional Protein Deficiency	1 in 9,000	< 1 in 1,000,000
	< 1 in 13,000	< 1 in 1,000,000
Dihydrolipoamide Dehydrogenase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Dysferlinopathy	1 in 11,000	< 1 in 1,000,000
Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy)	Not calculated	Not calculated
ERCC6-related Disorders	1 in 8,400	< 1 in 1,000,000
ERCC8-related Disorders	1 in 12,000	< 1 in 1,000,000
EVC-related Ellis-van Creveld Syndrome	1 in 7,800	< 1 in 1,000,000
EVC2-related Ellis-van Creveld Syndrome	1 in 9,800	< 1 in 1,000,000
Fabry Disease	< 1 in 1,000,000	1 in 80,000
Familial Dysautonomia	< 1 in 50,000	< 1 in 1,000,000
Familial Hyperinsulinism, ABCC8-related	1 in 17,000	< 1 in 1,000,000
Familial Hyperinsulinism, KCNJ11-related	< 1 in 50,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000
Fanconi Anemia Complementation Group A	1 in 3,100	< 1 in 1,000,000
· · ·	< 1 in 50,000	< 1 in 1,000,000
FKRP-related Disorders	1 in 32,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000
	< 1 in 30,000	< 1 in 1,000,000
Galactokinase Deficiency	1 in 44,000	< 1 in 1,000,000
Galactosemia	1 in 11,000	< 1 in 1,000,000
	< 1 in 3,800	< 1 in 1,000,000
Gaucher Disease		
	1 in 310	1 in 150,000
GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness	1 in 4,000	1 in 660,000
GLB1-related Disorders	1 in 17,000	< 1 in 1,000,000
GLDC-related Glycine Encephalopathy	1 in 2,800	< 1 in 1,000,000
Glutaric Acidemia, GCDH-related	1 in 16,000	< 1 in 1,000,000
Glycine Encephalopathy, AMT-related	1 in 26,000	< 1 in 1,000,000
Glycogen Storage Disease Type la	1 in 18,000	< 1 in 1,000,000
Glycogen Storage Disease Type Ib	1 in 35,000	< 1 in 1,000,000
Glycogen Storage Disease Type III	1 in 16,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000
GNPTAB-related Disorders	1 in 20,000	< 1 in 1,000,000
HADHA-related Disorders	1 in 25,000	< 1 in 1,000,000
Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease)	1 in 2,400	1 in 230,000
Hereditary Fructose Intolerance	1 in 7,900	< 1 in 1,000,000
Hexosaminidase A Deficiency (Including Tay-Sachs Disease)		
	1 in 30,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000
Holocarboxylase Synthetase Deficiency	1 in 15,000	< 1 in 1,000,000
Homocystinuria, CBS-related	1 in 27,000	< 1 in 1,000,000
· ·	< 1 in 50,000	< 1 in 1,000,000
Hypophosphatasia	1 in 23,000	< 1 in 1,000,000
Isovaleric Acidemia	1 in 26,000	< 1 in 1,000,000
-	< 1 in 50,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000
Junctional Epidermolysis Bullosa, LAMB3-related	1 in 31,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000
Krabbe Disease	1 in 17,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000
Lipoid Congenital Adrenal Hyperplasia	< 1 in 50,000	< 1 in 1,000,000
Lysosomal Acid Lipase Deficiency	< 1 in 34,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type Ia	1 in 9,400	< 1 in 1,000,000
Maple Syrup Urine Disease Type Ib	1 in 36,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type II	1 in 4,100	< 1 in 1,000,000
Medium Chain Acyl-CoA Dehydrogenase Deficiency	1 in 6,000	< 1 in 1,000,000
	< 1 in 50,000	< 1 in 1,000,000

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863 FEMALE

N/A

Disease	DONOR 12799	Denne dustine Diele
Disease	Residual Risk	Reproductive Risk
Methylmalonic Acidemia, cblA Type	< 1 in 50,000	< 1 in 1,000,000
Methylmalonic Acidemia, cblB Type	< 1 in 50,000	< 1 in 1,000,000
Methylmalonic Aciduria and Homocystinuria, cblC Type	1 in 16,000	< 1 in 1,000,000
MKS1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Mucolipidosis III Gamma	< 1 in 20,000	< 1 in 1,000,000
Mucolipidosis IV	< 1 in 50,000	< 1 in 1,000,000
Mucopolysaccharidosis Type I	1 in 16,000	< 1 in 1,000,000
Mucopolysaccharidosis Type II	< 1 in 1,000,000	1 in 300,000
Mucopolysaccharidosis Type IIIA	1 in 16,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIB	1 in 26,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIC	< 1 in 50,000	< 1 in 1,000,000
Muscular Dystrophy, LAMA2-related	1 in 5,700	< 1 in 1,000,000
MUT-related Methylmalonic Acidemia	1 in 7,100	< 1 in 1,000,000
MYO7A-related Disorders	1 in 15,000	< 1 in 1,000,000
NEB-related Nemaline Myopathy	1 in 1,200	1 in 400,000
Nephrotic Syndrome, NPHS1-related	< 1 in 50,000	< 1 in 1,000,000
Nephrotic Syndrome, NPHS2-related	1 in 35,000	< 1 in 1,000,000
Neuronal Ceroid Lipofuscinosis, CLN6-related	< 1 in 50,000	< 1 in 1,000,000
Niemann-Pick Disease Type C1	1 in 17,000	< 1 in 1,000,000
Niemann-Pick Disease Type C2	< 1 in 50,000	< 1 in 1,000,000
Niemann-Pick Disease, SMPD1-related	1 in 25,000	< 1 in 1,000,000
Nijmegen Breakage Syndrome	< 1 in 50,000	< 1 in 1,000,000
Ornithine Transcarbamylase Deficiency	< 1 in 1,000,000	1 in 140,000
PCCA-related Propionic Acidemia	1 in 4,200	< 1 in 1,000,000
PCCB-related Propionic Acidemia	1 in 22,000	< 1 in 1,000,000
PCDH15-related Disorders	1 in 3,300	< 1 in 1,000,000
Pendred Syndrome	1 in 6,400	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 1	1 in 16,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 3	1 in 44,000	< 1 in 1,000,000
	1 in 9,300	
Peroxisome Biogenesis Disorder Type 4		< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 5	< 1 in 71,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 6	< 1 in 50,000	< 1 in 1,000,000
Phenylalanine Hydroxylase Deficiency	1 in 8,600	< 1 in 1,000,000
POMGNT-related Disorders	< 1 in 12,000	< 1 in 1,000,000
Pompe Disease	1 in 10,000	< 1 in 1,000,000
PPT1-related Neuronal Ceroid Lipofuscinosis	1 in 7,700	< 1 in 1,000,000
Primary Carnitine Deficiency	1 in 16,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 1	1 in 13,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 2	< 1 in 50,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 3	1 in 20,000	< 1 in 1,000,000
Pycnodysostosis	1 in 43,000	< 1 in 1,000,000
Pyruvate Carboxylase Deficiency	1 in 25,000	< 1 in 1,000,000
Rhizomelic Chondrodysplasia Punctata Type 1	1 in 16,000	< 1 in 1,000,000
RTEL1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Sandhoff Disease	1 in 18,000	< 1 in 1,000,000
Short-chain Acyl-CoA Dehydrogenase Deficiency	1 in 9,700	< 1 in 1,000,000
Sjogren-Larsson Syndrome	< 1 in 12,000	< 1 in 1,000,000
SLC26A2-related Disorders	1 in 16,000	< 1 in 1,000,000
Smith-Lemli-Opitz Syndrome	< 1 in 50,000	< 1 in 1,000,000
Spastic Paraplegia Type 15	< 1 in 50,000	< 1 in 1,000,000
	Negative for g.27134T>G SNP	
Spinal Muscular Atrophy	SMN1: 2 copies	1 in 140,000
	1 in 700	
Spondylothoracic Dysostosis	< 1 in 50,000	< 1 in 1,000,000
TGM1-related Autosomal Recessive Congenital Ichthyosis	1 in 22,000	< 1 in 1,000,000
TPP1-related Neuronal Ceroid Lipofuscinosis	1 in 30,000	< 1 in 1,000,000
Tyrosine Hydroxylase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Tyrosinemia Type I	1 in 16,000	< 1 in 1,000,000
Tyrosinemia Type II	1 in 25,000	< 1 in 1,000,000
USH1C-related Disorders	1 in 30,000	< 1 in 1,000,000
USH2A-related Disorders	1 in 5,900	< 1 in 1,000,000
	1 11 3,700	IIIII,000,000

MALE DONOR 12799 DOB: Ethnicity: South Asian Barcode: 11004512875863 FEMALE N/A

Disease	DONOR 12799 Residual Risk	Reproductive Risk
Very-long-chain Acyl-CoA Dehydrogenase Deficiency	1 in 14,000	< 1 in 1,000,000
Wilson Disease	1 in 9,000	< 1 in 1,000,000
X-linked Adrenal Hypoplasia Congenita	< 1 in 1,000,000	< 1 in 1,000,000
X-linked Adrenoleukodystrophy	1 in 90,000	1 in 42,000
X-linked Alport Syndrome	Not calculated	Not calculated
X-linked Juvenile Retinoschisis	< 1 in 1,000,000	1 in 50,000
X-linked Myotubular Myopathy	Not calculated	Not calculated
X-linked Severe Combined Immunodeficiency	< 1 in 1,000,000	1 in 200,000
Xeroderma Pigmentosum Group A	1 in 28,000	< 1 in 1,000,000
Xeroderma Pigmentosum Group C	1 in 7,300	< 1 in 1,000,000