

RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Jeffrey Olliffe 4915 25th Ave NE Ste 204W Seattle, WA 98105 Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 11/15/2021 MALE DONOR 10612 DOB: Ethnicity: Southern European Sample Type: EDTA Blood Date of Collection: Date Received: 11/08/2021 Date Tested: 11/13/2021 Barcode: 11004512971378 Accession ID: CSLQ62HDMKJKR4J Indication: Egg or sperm donor FEMALE N/A

POSITIVE: CARRIER

Foresight® Carrier Screen

ABOUT THIS TEST

The **Myriad Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	DONOR 10612	Partner
Panel Information	Foresight Carrier Screen Universal Panel Fundamental Plus Panel Fundamental Panel (175 conditions tested)	N/A
POSITIVE: CARRIER Pendred Syndrome Reproductive Risk: 1 in 260 Inheritance: Autosomal Recessive	CARRIER* NM_000441.1(SLC26A4):c. -3-2A>G heterozygote	The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps".
POSITIVE: CARRIER Congenital Adrenal Hyperplasia, CYP21A2-related Reproductive Risk: 1 in 270 Inheritance: Autosomal Recessive	CARRIER* NM_000500.7(CYP21A2):c. 844G>T(V282L) heterozygote	The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps".

*Carriers generally do not experience symptoms.

No disease-causing mutations were detected in any other gene tested. A complete list of all conditions tested can be found on page 9.

CLINICAL NOTES

None

NEXT STEPS

- Carrier testing should be considered for the diseases specified above for the patient's partner.
- Patients are recommended to discuss reproductive risks with their health care provider or a genetic counselor. Patients may also wish to discuss any positive results with blood relatives, as there is an increased chance that they are also carriers.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378 FEMALE N/A

Positive: carrier Pendred Syndrome

Reproductive risk: 1 in 260 Risk before testing: 1 in 17,000

Gene: SLC26A4 | Inheritance Pattern: Autosomal Recessive

Patient	DONOR 10612	No partner tested
Result		N/A
Variant(s)	NM_000441.1(SLC26A4):c3-2A>G heterozygote	N/A
Methodology	Sequencing with copy number analysis (v3.1)	N/A
Interpretation	This individual is a carrier of Pendred syndrome. Carriers generally do not experience symptoms.	N/A
Detection rate	>99%	N/A
Exons tested	NM_000441:2-21.	N/A

What Is Pendred Syndrome?

Pendred syndrome, caused by mutations in the *SLC26A4* gene, is an inherited condition in which the body's ability to make a protein called pendrin is impaired. Pendrin plays an essential role in normal functions of the inner ear and thyroid.

Individuals with Pendred syndrome experience profound deafness that is usually present from birth, though severity can vary. Some individuals with Pendred syndrome may lose their hearing rapidly in infancy or early childhood, while moderate hearing loss may not worsen over time in other individuals. Typical inner-ear malformations in individuals with Pendred syndrome may also affect one's balance.

Some individuals may also experience an abnormal enlargement of the thyroid (also known as a goiter) which can present itself as a large swelling at the base of the neck. This symptom is usually secondary to a diagnosis of hearing loss and can happen at any time throughout one's life. While thyroid function is usually not affected by Pendred syndrome, goiters can disrupt swallowing and breathing due to pressure placed on the esophagus and windpipe.

How Common Is Pendred Syndrome?

The frequency of Pendred syndrome is unknown, but some researchers believe it may be the cause of up to 10% of infant deafness.

How Is Pendred Syndrome Treated?

Treatment for Pendred syndrome addresses hearing loss early in life, including hearing aids for children with the condition. Cochlear implants show promise for restoring some hearing to individuals with severe to profound deafness. Children should receive special educational programs for the hearing impaired.

Breathing or swallowing difficulties caused by goiters may be treated using radioactive iodine to shrink the swelling. Surgical removal of all or part of the thyroid may also be an option.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

What Is the Prognosis for an Individual with Pendred Syndrome?

Pendred syndrome causes moderate to profound hearing loss but does not affect lifespan.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

POSITIVE: CARRIER Congenital Adrenal Hyperplasia, CYP21A2-related

Reproductive risk: 1 in 270 Risk before testing: 1 in 18,000

Gene: CYP21A2 | Inheritance Pattern: Autosomal Recessive

Patient	DONOR 10612	No partner tested
Result	Carrier	N/A
Variant(s)	NM_000500.7(CYP21A2):c.844G>T(V282L) heterozygote	N/A
Methodology	Analysis of homologous regions (v3.2)	N/A
Interpretation	This individual is a carrier of congenital adrenal hyperplasia, CYP21A2-related. Carriers generally do not experience symptoms. NM_000500.7(CYP21A2):c.844G>T(V282L) is a non-classic congenital adrenal hyperplasia, CYP21A2-related mutation.	N/A
Detection rate	96%	N/A
Variants tested	CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V282L, [I237N;V238E;M240K], c.293-13C>G.	N/A

What Is Congenital Adrenal Hyperplasia, CYP21A2-Related?

Congenital adrenal hyperplasia (CAH) refers to a group of genetic disorders that affect the body's adrenal glands. The adrenal glands regulate essential functions in the body, including the production of several important hormones. CAH occurs when the adrenal glands are unable to produce these hormones properly, resulting in a hormone imbalance. CAH, CYP21A2-related is caused by mutations in the *CYP21A2* gene. The *CYP21A2* gene produces the 21-hydroxylase enzyme. Another name for this disorder is 21-hydroxylase-deficient CAH (21-OHD CAH).

When the 21-hydroxylase enzyme is missing or present at low levels, the adrenal glands are unable to produce two critical hormones, cortisol and aldosterone. The body responds to this deficiency by producing an excess of male sex hormones, called androgens. Collectively, the excess androgen production and hormone deficiencies can lead to a variety of medical problems, which vary in severity depending on the form of CAH. CAH associated with *CYP21A2* (21-OHD CAH) has two major forms: classic and non-classic.

CLASSIC FORM

The most severe form referred to as classic 21-OHD CAH, can be further divided into two different subtypes: salt wasting and simple virilizing (non-salt wasting) types. The classic salt-wasting type is associated with near-to-complete deficiency of the 21-hydroxylase enzyme, resulting in the complete inability to produce the hormones cortisol and aldosterone. In this type, the body cannot retain enough sodium (salt) and when too much salt is lost in the urine, it may lead to dehydration, vomiting, diarrhea, poor growth, heart-rhythm abnormalities (arrhythmias), and shock (salt wasting). If not properly treated, salt wasting can lead to death in some cases.

Additionally, female newborns often have external genitals that do not clearly appear either male or female (ambiguous genitalia), whereas male newborns may present with enlarged genitals. Signs of early puberty and the exaggerated development of male characteristics (virilization) occur in both males and females with CAH. These symptoms may include: rapid growth and development

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

in early childhood, but shorter-than-average height in adulthood, abnormal menstruation cycles for females, excess facial hair for females, early facial-hair growth for males, severe acne, and infertility in both men and women. Male characteristics such as muscle bulk and a deep voice can occur in females and in boys (masculinization).

The simple virilizing type of CAH is associated with partial 21-hydroxylase deficiency. Unlike the salt-wasting type, individuals with this condition typically do not experience severe and life-threatening sodium-deficiency symptoms as newborns. However, the majority of female newborns with this type will have ambiguous genitalia, and both male and female children may show signs of early puberty.

NON-CLASSIC FORM

The non-classic type (late-onset type) is the the least-severe form of 21-OHD CAH and is caused by a mild deficiency of the 21-hydroxylase enzyme. Individuals with this type may start experiencing symptoms related to excess androgen production in childhood, adolescence, or adulthood. Both males and females may exhibit rapid growth in childhood, shorter-than-average stature in adulthood, virilization, and infertility. Additionally, girls may experience symptoms of masculinization and abnormal menstruation. However, some individuals with non-classic CAH may never know they are affected because the symptoms are so mild.

How Common Is Congenital Adrenal Hyperplasia, CYP21A2-Related?

The incidence of 21-OHD CAH varies by type and ethnicity. The incidence for the classic form is approximately 1 in 15,000 births worldwide. The prevalence of the classic form varies from 1 in 300 for Yupik Eskimos in Alaska to 1 in 21,000 in Japanese. The non-classic form of 21-OHD CAH is much more common, with an incidence of approximately 1 in 1000 births. The prevalence of the non-classic form is much higher in some ethnicities, namely in the Ashkenazi Jewish (1 in 27), Hispanic (1 in 40), Slavic (1 in 50), and Italian (1 in 300) ethnicities. Mutations in *CYP21A2* account for about 90% of CAH cases.

How Is Congenital Adrenal Hyperplasia, CYP21A2-Related Treated?

Currently, there is no cure for CAH. However, treatments are available to address some of the associated symptoms. Patients benefit from taking hormone-replacement medications, which work to increase levels of deficient hormones and suppress the overproduction of male hormones. Most individuals with classic CAH will need to take hormone medications for the rest of their lives. Those with the less-severe forms of CAH are sometimes able to stop taking these medications in adulthood and are typically treated with lower doses. Some individuals with non-classic CAH do not require any treatment. A multidisciplinary team of physicians, including an endocrinologist, will need to monitor the medication dosage, medication side effects, growth, and sexual development of patients who continue to receive treatment.

Newborn females with ambiguous genitalia may need surgery to correct the function and appearance of the external genitalia. Surgery, if needed, is most often performed during infancy, but can be performed later in life. Treatments provided during pregnancy may reduce the degree of virilization in female fetuses. However, because the long-term safety of prenatal treatment is unknown, these therapies are considered experimental and are not recommended by professional guidelines.

What Is the Prognosis for an Individual with Congenital Adrenal Hyperplasia, CYP21A2-Related?

With early diagnosis and proper medication management, most individuals with 21-OHD CAH will have a normal life expectancy. Early death can occur during periods of significant sodium loss (salt crises) if medication dosage is not adequately adjusted, especially during times of illness or trauma. Problems with growth and development, ambiguous genitalia, and virilization are monitored by physicians on an ongoing basis. Females with 21-OHD CAH can become pregnant, but fertility is reduced.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

Methods and Limitations

DONOR 10612 [Foresight Carrier Screen]: Sequencing with copy number analysis, spinal muscular atrophy, analysis of homologous regions, and alpha thalassemia (HBA1/ HBA2) sequencing with targeted copy number analysis (Assay(s): DTS v3.2).

Sequencing with copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to analyze the genes listed in the Conditions Tested section of the report. Except where otherwise noted, the region of interest (ROI) comprises the indicated coding regions and 20 non-coding bases flanking each region. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected non-coding bases are excluded from the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. Select genes or regions for which pseudogenes or other regions of homology impede reliable variant detection may be assayed using alternate technology, or they may be excluded from the ROI. *CFTR* and *DMD* testing includes analysis for exon-level deletions and duplications with an average sensitivity of ~99%. Only exon-level deletions are assayed for other genes on the panel and such deletions are detected with a sensitivity of ≥75%. Selected founder deletions may be detected at slightly higher sensitivity. Affected exons and/or breakpoints of copy number variant are provided in the variant nomenclature. In some cases, the copy number variant may be larger or smaller than indicated. If *GJB2* is tested, large upstream deletions involving the *GJB6* and/or *CRYL1* genes that may affect the expression of *GJB2* are also analyzed.

Spinal muscular atrophy

Targeted copy number analysis via high-throughput sequencing is used to determine the copy number of exon 7 of the *SMN1* gene. Other genetic variants may interfere with this analysis. Some individuals with two copies of *SMN1* are "silent" carriers with both *SMN1* genes on one chromosome and no copies of the gene on the other chromosome. This is more likely in individuals who have two copies of the *SMN1* gene and are positive for the g.27134T>G single-nucleotide polymorphism (SNP) (PMID: 9199562, 23788250, and 28676062), which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have two copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read-depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss-of-function variants in certain genes that have homology to other genomic regions. The precise breakpoints of large deletions in these genes cannot be determined but are instead estimated from copy number analysis. Pseudogenes may interfere with this analysis, especially when many pseudogene copies are present.

If *CYP21A2* is tested, patients who have one or more additional copies of the *CYP21A2* gene and a pathogenic variant may or may not be a carrier of 21-hydroxylase deficient CAH, depending on the chromosomal location of the variants (phase). Benign *CYP21A2* gene duplications and/or triplications will only be reported in this context. Some individuals with two functional *CYP21A2* gene copies may be "silent" carriers, with two gene copies resulting from a duplication on one chromosome and a gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay. Given that the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are based only on the published incidence for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate for CAH, especially in the aforementioned populations, as they do not account for non-classic CAH.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to identify sequence variation and functional gene copies within the region of interest (ROI) of *HBA1* and *HBA2*, which includes the listed exons plus 20 intronic flanking bases. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. For large deletions or duplications in these genes, the precise breakpoints cannot be determined but are instead estimated from copy number analysis. This assay has been validated to detect up to two additional copies of each alpha globin gene. In rare instances where assay results suggest greater than two additional copies are present, this will be noted but the specific number of gene copies observed will not be provided.

Extensive sequence homology exists between *HBA1* and *HBA2*. This sequence homology can prevent certain variants from being localized to one gene over the other. In these instances, variant nomenclature will be provided for both genes. If follow-up testing is indicated for patients with the nomenclature provided for both genes, both *HBA1* and *HBA2* should be tested. Some individuals with four functional alpha globin gene copies may be "silent" carriers, with three gene copies resulting from triplication on one chromosome and a single gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay.

Interpretation of reported variants

The classification and interpretation of all variants identified in this assay reflects the current state of Myriad's scientific understanding at the time this report was issued. Variants are classified according to internally defined criteria, which are compatible with the ACMG Standards and Guidelines for the Interpretation of Sequence Variants (PMID: 25741868). Variants that have been determined by Myriad to be disease-causing or likely disease-causing (i.e. pathogenic or likely pathogenic) are reported. Benign variants, variants of uncertain clinical significance (VUS), and variants not directly associated with the specified disease phenotype(s) are not reported. Variant classification and interpretation may change for a variety of reasons, including but not limited to, improvements to classification techniques, availability of additional scientific information, and observation of a variant in more patients. If the classification of one or more variants identified in this patient changes, an updated report reflecting the new classification generally will not be issued. If an updated report is issued, the variants reported may change based on their current classification. This can include changes to the variants displayed in gene specific 'variants tested' sections. Healthcare providers may contact Myriad directly to request updated variant classification information specific to this test result.

Limitations

The MWH Foresight Carrier Screen is designed to detect and report germline (constitutional) alterations. Mosaic (somatic) variation may not be detected, and if it is detected, it may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes (phase). This test is not designed to detect sex-chromosome copy number variations. If present, sex-chromosome abnormalities may significantly reduce test sensitivity for X-linked conditions. Variant interpretation and residual and reproductive risk estimations assume a normal karyotype and may be different for individuals with abnormal karyotypes. The test does not fully address all inherited forms of intellectual disability, birth defects, or heritable diseases. Furthermore, not all forms of genetic variation are detected by this assay (i.e., duplications [except in specified genes], chromosomal rearrangements, structural abnormalities, etc.). Additional testing may be appropriate for some individuals. Pseudogenes and other regions of homology may interfere with this analysis. In an unknown number of cases, other genetic variation may interfere with variant detection. Rare carrier states where complementary changes exist between the chromosomes may not be detected by the assay. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions, and technical or analytical errors.

Detection rates are determined using published scientific literature and/or reputable databases, when available, to estimate the fraction of disease alleles, weighted by frequency, that the methodology is predicted to be able or unable to detect. Detection rates are approximate and only account for analytical sensitivity. Certain variants that have been previously described in the literature may not be reported, if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease specific rates of *de novo* variation.

This test was developed, and its performance characteristics determined by, Myriad Women's Health, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: #05D1102604.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

Incidental Findings

Unless otherwise indicated, these results and interpretations are limited to the specific disease panel(s) requested by the ordering healthcare provider. In some cases, standard data analyses may identify genetic findings beyond the region(s) of interest specified by the test, and such findings may not be reported. These findings may include genomic abnormalities with major, minor, or no, clinical significance.

If you have questions or would like more information about any of the test methods or limitations, please contact (888) 268-6795.

Resources

GENOME CONNECT | http://www.genomeconnect.org

Patients can share their reports using research registries such as Genome Connect, an online research registry building a genetics and health knowledge base. Genome Connect provides patients, physicians, and researchers an opportunity to share genetic information to support the study of the impact of genetic variation on health conditions.

SENIOR LABORATORY DIRECTOR

Kenter R. Boulea

Karla R. Bowles, PhD, FACMG, CGMB

Report content approved by Erik Zmuda, PhD, Diplomate of the American Board of Medical Genetics and Genomics, CGMB on Nov 15, 2021

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

Conditions Tested

6-pyruvoyl-tetrahydropterin Synthase Deficiency - Gene: PTS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000317:1-6. Detection Rate: Southern European >99%.

Adenosine Deaminase Deficiency - Gene: ADA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000022:1-12. Detection Rate: Southern European 98%.

Alpha Thalassemia, HBA1/HBA2-related - Genes: HBA1, HBA2. Autosomal Recessive. Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis. Exons: NM_000517:1-3; NM_000558:1-3. Variants (16): -(alpha)20.5, --BRIT, --MEDI, --MEDII, --SEA, --THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, Poly(A) AATAAA>AATA-, Poly(A) AATAAA>AATAAG, Poly(A) AATAAA>AATGAA, anti3.7, anti4.2, del HS-40. Detection Rate: Southern European >99%.

Alpha-mannosidosis - Gene: MAN2B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000528:1-23. Detection Rate: Southern European >99%.

Alpha-sarcoglycanopathy - Gene: SGCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000023:1-9. Detection Rate: Southern European >99%.

Alstrom Syndrome - Gene: ALMS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015120:1-23. Detection Rate: Southern European >99%.

Andermann Syndrome - Gene: SLC12A6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133647:1-25. Detection Rate: Southern European >99%.

Argininemia - Gene: ARG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000045:1-8. Detection Rate: Southern European 97%.

Argininosuccinic Aciduria - Gene: ASL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001024943:1-16. Detection Rate: Southern European >99%.

Aspartylglucosaminuria - Gene: AGA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000027:1-9. Detection Rate: Southern European >99%.

Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000370:1-5. Detection Rate: Southern European >99%.

Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000051:2-63. Detection Rate: Southern European 96%.

ATP7A-related Disorders - Gene: ATP7A. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000052:2-23. Detection Rate: Southern European 90%.

Autoimmune Polyglandular Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000383:1-14. Detection Rate: Southern European >99%.

Autosomal Recessive Osteopetrosis Type 1 - Gene: TCIRG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006019:2-20. Detection Rate: Southern European 96%.

Autosomal Recessive Polycystic Kidney Disease, PKHD1-related - Gene: PKHD1. Autosomal Recessive. Sequencing with copy number analysis. Exons:

NM_138694 2-67. Detection Rate: Southern European >99%

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay - Gene: SACS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014363 2-10. Detection Rate: Southern European 99%.

Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024649:1-17. Detection Rate: Southern European >99%. **Bardet-Biedl Syndrome, BBS10-related** - Gene: BBS10. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024685:1-2. Detection Rate: Southern European >99%.

Bardet-Biedl Syndrome, BBS12-related - Gene: BBS12. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_152618:2. Detection Rate: Southern European >99%.

Bardet-Biedl Syndrome, BBS2-related - Gene: BBS2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_031885:1-17. Detection Rate: Southern European >99%.

BCS1L-related Disorders - Gene: BCS1L. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004328:3-9. Detection Rate: Southern European >99%.

Beta-sarcoglycanopathy - Gene: SGCB. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000232:1-6. **Detection Rate:** Southern European >99%.

Biotinidase Deficiency - Gene: BTD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000060:1-4. Detection Rate: Southern European >99%.

Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000057:2-22. Detection Rate: Southern European >99%.

Calpainopathy - Gene: CAPN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000070:1-24. Detection Rate: Southern European 99%.

Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000049:1-6. Detection Rate: Southern European 98%. Carbamoylphosphate Synthetase I Deficiency - Gene: CPS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001875:1-38. Detection Rate: Southern European >99%.

Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001876:2-19. Detection Rate: Southern European >99%.

Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000098:1-5. Detection Rate: Southern European >99%.

Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NR_003051:1. Detection Rate: Southern European >99%.

Cerebrotendinous Xanthomatosis - Gene: CYP27A1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000784:1-9. **Detection Rate:** Southern European >99%.

Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000050:3-16. Detection Rate: Southern European >99%.

CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001042432 2-16. Detection Rate: Southern European >99%.

CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006493:1-4. Detection Rate: Southern European >99%.

CLN8-related Neuronal Ceroid Lipofuscinosis - Gene: CLN8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_018941:2-3. Detection Rate: Southern European >99%.

Cohen Syndrome - Gene: VPS13B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017890:2-62. Detection Rate: Southern European 97%.

COL4A3-related Alport Syndrome - Gene: COL4A3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000091:1-52. Detection Rate: Southern European 94%.

COL4A4-related Alport Syndrome - Gene: COL4A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000092:2-48. **Detection Rate:** Southern European >99%.

Combined Pituitary Hormone Deficiency, PROP1-related - Gene: PROP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006261:1-3. Detection Rate: Southern European >99%.

Congenital Adrenal Hyperplasia, CYP11B1-related - Gene: CYP11B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000497:1-9. Detection Rate: Southern European 97%.

Congenital Adrenal Hyperplasia, CYP21A2-related - Gene: CYP21A2. Autosomal Recessive. Analysis of homologous regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V282L, [I237N;V238E;M240K], c.293-13C>G. Detection Rate: Southern European 96%.

Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000303:1-8. **Detection Rate:** Southern European >99%.

Congenital Disorder of Glycosylation Type Ic - Gene: ALG6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_013339:2-15. **Detection Rate:** Southern European >99%.

Congenital Disorder of Glycosylation, MPI-related - Gene: MPI. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002435:1-8. Detection Rate: Southern European >99%.

Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_025136:1-2. **Detection Rate:** Southern European >99%.

Cystic Fibrosis - Gene: CFTR. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. **Detection Rate:** Southern European >99%.

Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004937:3-12. Detection Rate: Southern European >99%. D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000414:1-24. Detection Rate: Southern European 98%.

Delta-sarcoglycanopathy - **Gene:** SGCD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000337:2-9. **Detection Rate:** Southern European 96%.

Dihydrolipoamide Dehydrogenase Deficiency - Gene: DLD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000108:1-14. Detection Rate: Southern European >99%.

Dysferlinopathy - Gene: DYSF. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003494:1-55. Detection Rate: Southern European 98%.

Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) - Gene: DMD. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_004006:1-79. Detection Rate: Southern European 99%.

ERCC6-related Disorders - Gene: ERCC6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000124:2-21. **Detection Rate:** Southern European 96%.

ERCC8-related Disorders - Gene: ERCC8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000082:1-12. **Detection Rate:** Southern European 97%.

EVC-related Ellis-van Creveld Syndrome - Gene: EVC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153717:1-21. **Detection Rate:** Southern European 96%.

EVC2-related Ellis-van Creveld Syndrome - Gene: EVC2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_147127:1-22. **Detection Rate:** Southern European 98%.

Fabry Disease - Gene: GLA. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000169:1-7. Detection Rate: Southern European 98%.
Familial Dysautonomia - Gene: ELP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003640:2-37. Detection Rate: Southern European >99%. MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

Familial Hyperinsulinism, ABCC8-related - Gene: ABCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000352:1-39. Detection Rate: Southern European >99%.

FEMALE

N/A

Familial Hyperinsulinism, KCNJ11-related - Gene: KCNJ11. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000525:1. Detection Rate: Southern European >99%.

Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000243:1-10. Detection Rate: Southern European >99%.

Fanconi Anemia Complementation Group A - Gene: FANCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000135:1-43. Detection Rate: Southern European 92%.

Fanconi Anemia, FANCC-related - Gene: FANCC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000136:2-15. Detection Rate: Southern European >99%.

FKRP-related Disorders - Gene: FKRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_024301:4. Detection Rate: Southern European >99%. FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001079802:3-11. Detection Rate: Southern European >99%.

Free Sialic Acid Storage Disorders - Gene: SLC17A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012434:1-11. Detection Rate: Southern European 98%.

Galactokinase Deficiency - Gene: GALK1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000154:1-8. Detection Rate: Southern European >99%.

Galactosemia - Gene: GALT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000155:1-11. Detection Rate: Southern European >99%.

Gamma-sarcoglycanopathy - Gene: SGCG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000231:2-8. Detection Rate: Southern European 87%.

Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of homologous regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: Southern European 60%.

GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness - Gene: GJB2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004004:1-2. Detection Rate: Southern European >99%.

GLB1-related Disorders - Gene: GLB1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000404:1-16. Detection Rate: Southern European >99%.

Glutaric Acidemia, GCDH-related - Gene: GCDH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000159:2-12. Detection Rate: Southern European >99%.

Glycine Encephalopathy, AMT-related - Gene: AMT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000481:1-9. **Detection Rate:** Southern European >99%.

Glycine Encephalopathy, GLDC-related - Gene: GLDC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000170:1-25. **Detection Rate:** Southern European 94%.

Glycogen Storage Disease Type la - Gene: G6PC1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000151:1-5. **Detection Rate:** Southern European 98%.

Glycogen Storage Disease Type Ib - Gene: SLC37A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001164277 3-11. **Detection Rate:** Southern European >99%.

Glycogen Storage Disease Type III - Gene: AGL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000642:2-34. Detection Rate: Southern European >99%.

GNE Myopathy - Gene: GNE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001128227:1-12. Detection Rate: Southern European >99%. **GNPTAB-related Disorders** - Gene: GNPTAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024312:1-21. Detection Rate: Southern European >99%.

HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000182:1-20. Detection Rate: Southern European >99%.

Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000518:1-3. Detection Rate: Southern European >99%. Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000035:2-9. Detection Rate: Southern European >99%.

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000520:1-14. Detection Rate: Southern European >99%.

HMG-CoA Lyase Deficiency - Gene: HMGCL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000191:1-9. Detection Rate: Southern European >99%.

Holocarboxylase Synthetase Deficiency - Gene: HLCS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000411:4-12. Detection Rate: Southern European >99%.

Homocystinuria, CBS-related - Gene: CBS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000071:3-17. Detection Rate: Southern European >99%.

Hydrolethalus Syndrome - Gene: HYLS1. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_145014:4. Detection Rate: Southern European >99%.

Hypophosphatasia - Gene: ALPL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000478:2-12. Detection Rate: Southern European >99%.

Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002225:1-12. Detection Rate: Southern European >99%.

Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001173990:1-5. Detection Rate: Southern European >99%.

Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000227:1-38. Detection Rate: Southern European >99%.

Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000228:2-23. Detection Rate: Southern European >99%.

Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005562:1-23. Detection Rate: Southern European >99%.

Krabbe Disease - Gene: GALC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000153:1-17. Detection Rate: Southern European >99%.

Leigh Syndrome, French-Canadian Type - Gene: LRPPRC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133259:1-38. Detection Rate: Southern European >99%.

Lipoid Congenital Adrenal Hyperplasia - Gene: STAR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000349:1-7. Detection Rate: Southern European >99%.

Lysosomal Acid Lipase Deficiency - Gene: LIPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000235:2-10. Detection Rate: Southern European 98%.

Maple Syrup Urine Disease Type Ia - Gene: BCKDHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000709:1-9. Detection Rate: Southern European >99%.

Maple Syrup Urine Disease Type Ib - Gene: BCKDHB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_183050:1-10. Detection Rate: Southern European >99%.

Maple Syrup Urine Disease Type II - Gene: DBT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001918:1-11. Detection Rate: Southern European 97%.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000016:1-12. Detection Rate: Southern European >99%.

FEMALE

N/A

Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015166 2-12. Detection Rate: Southern European >99%.

Metachromatic Leukodystrophy - **Gene:** ARSA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000487:1-8. **Detection Rate:** Southern European >99%.

Methylmalonic Acidemia, cblA Type - Gene: MMAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_172250:2-7. Detection Rate: Southern European >99%.

Methylmalonic Acidemia, cblB Type - Gene: MMAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_052845:1-9. Detection Rate: Southern European >99%.

Methylmalonic Acidemia, MMUT-related - Gene: MMUT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000255:2-13. Detection Rate: Southern European >99%.

Methylmalonic Aciduria and Homocystinuria, cblC Type - Gene: MMACHC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015506:1-4. Detection Rate: Southern European >99%.

MKS1-related Disorders - Gene: MKS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017777:1-18. Detection Rate: Southern European >99%.

Mucolipidosis III Gamma - Gene: GNPTG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032520:1-11. Detection Rate: Southern European 98%.

Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_020533:1-14. Detection Rate: Southern European >99%.

Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000203:1-14. Detection Rate: Southern European >99%.

Mucopolysaccharidosis Type II - Gene: IDS. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000202:1-9. Detection Rate: Southern European 89%.

Mucopolysaccharidosis Type IIIA - Gene: SGSH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000199:1-8. Detection Rate: Southern European >99%.

Mucopolysaccharidosis Type IIIB - Gene: NAGLU. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000263:1-6. Detection Rate: Southern European >99%.

Mucopolysaccharidosis Type IIIC - Gene: HGSNAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_152419:1-18. Detection Rate: Southern European >99%.

Muscular Dystrophy, LAMA2-related - Gene: LAMA2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000426:1-43,45-65. Detection Rate: Southern European 98%.

MYO7A-related Disorders - Gene: MYO7A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000260:2-49. Detection Rate: Southern European >99%.

NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001271208:3-80,117-183. Detection Rate: Southern European 92%.

Nephrotic Syndrome, NPHS1-related - Gene: NPHS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004646:1-29. Detection Rate: Southern European >99%.

Nephrotic Syndrome, NPHS2-related - Gene: NPHS2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014625:1-8. Detection Rate: Southern European >99%.

Neuronal Ceroid Lipofuscinosis, CLN6-related - Gene: CLN6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017882:1-7. Detection Rate: Southern European >99%.

Niemann-Pick Disease Type C1 - Gene: NPC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000271:1-25. Detection Rate: Southern European >99%.

Niemann-Pick Disease Type C2 - Gene: NPC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006432:1-5. Detection Rate: Southern European >99%.

Niemann-Pick Disease, SMPD1-related - Gene: SMPD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000543:1-6. Detection Rate: Southern European >99%.

Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002485:1-16. Detection Rate: Southern European >99%.

Ornithine Transcarbamylase Deficiency - Gene: OTC. X-linked Recessive. Sequencing with copy number analysis. **Exons:** NM_000531:1-10. **Detection Rate:** Southern European 97%.

PCCA-related Propionic Acidemia - Gene: PCCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000282:1-24. Detection Rate: Southern European 95%.

PCCB-related Propionic Acidemia - Gene: PCCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000532:1-15. Detection Rate: Southern European >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_033056:2-33. Detection Rate: Southern European 93%.

Pendred Syndrome - Gene: SLC26A4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000441:2-21. Detection Rate: Southern European >99%.

Peroxisome Biogenesis Disorder Type 1 - Gene: PEX1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000466:1-24. **Detection Rate:** Southern European >99%.

Peroxisome Biogenesis Disorder Type 3 - Gene: PEX12. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000286:1-3. **Detection Rate:** Southern European >99%.

Peroxisome Biogenesis Disorder Type 4 - Gene: PEX6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000287:1-17. **Detection Rate:** Southern European 97%.

Peroxisome Biogenesis Disorder Type 5 - Gene: PEX2. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_000318:4. **Detection Rate:** Southern European >99%.

Peroxisome Biogenesis Disorder Type 6 - Gene: PEX10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153818:1-6. **Detection Rate:** Southern European >99%.

Phenylalanine Hydroxylase Deficiency - Gene: PAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000277:1-13. Detection Rate: Southern European >99%.

POMGNT-related Disorders - Gene: POMGNT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017739:2-22. Detection Rate: Southern European 96%.

Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000152:2-20. Detection Rate: Southern European 98%.

PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000310:1-9. **Detection Rate:** Southern European >99%.

Primary Carnitine Deficiency - Gene: SLC22A5. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_003060:1-10. **Detection Rate:** Southern European >99%.

Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000030:1-11. **Detection Rate:** Southern European >99%.

Primary Hyperoxaluria Type 2 - Gene: GRHPR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012203:1-9. Detection Rate: Southern European >99%.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378 FEMALE N/A

Primary Hyperoxaluria Type 3 - Gene: HOGA1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138413:1-7. Detection Rate: Southern European >99%.

Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000396:2-8. **Detection Rate:** Southern European >99%.

Pyruvate Carboxylase Deficiency - Gene: PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000920:3-22. **Detection Rate:** Southern European >99%.

Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000288:1-10. Detection Rate: Southern European >99%.

RTEL1-related Disorders - Gene: RTEL1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_032957:2-35. **Detection Rate:** Southern European >99%.

Sandhoff Disease - Gene: HEXB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000521:1-14. Detection Rate: Southern European 98%.

Short-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000017:1-10. Detection Rate: Southern European >99%.

Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000382:1-10. Detection Rate: Southern European 96%.

SLC26A2-related Disorders - Gene: SLC26A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000112:2-3. Detection Rate: Southern European >99%.

Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001360:3-9. Detection Rate: Southern European >99%.

Spastic Paraplegia Type 15 - Gene: ZFYVE26. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015346:2-42. Detection Rate: Southern European >99%.

Spinal Muscular Atrophy - Gene: SMN1. Autosomal Recessive. Spinal muscular atrophy. Variant (1): SMN1 copy number. Detection Rate: Southern European 94%. Spondylothoracic Dysostosis - Gene: MESP2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001039958:1-2. Detection Rate: Southern European >99%.

TGM1-related Autosomal Recessive Congenital Ichthyosis - Gene: TGM1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000359 2-15. Detection Rate: Southern European >99%.

TPP1-related Neuronal Ceroid Lipofuscinosis - Gene: TPP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000391:1-13. Detection Rate: Southern European >99%.

Tyrosine Hydroxylase Deficiency - Gene: TH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_199292:1-14. Detection Rate: Southern European >99%.

Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000137:1-14. Detection Rate: Southern European >99%.

Tyrosinemia Type II - Gene: TAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000353:2-12. Detection Rate: Southern European >99%.

USH1C-related Disorders - Gene: USH1C. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005709:1-21. Detection Rate: Southern European >99%.

USH2A-related Disorders - Gene: USH2A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_206933:2-72. Detection Rate: Southern European 98%.

Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_174878:1-3. Detection Rate: Southern European >99%.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378 FEMALE N/A

Very-Iong-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000018:1-20. Detection Rate: Southern European >99%.

Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000053:1-21. Detection Rate: Southern European >99%.

X-linked Adrenal Hypoplasia Congenita - Gene: NR0B1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000475:1-2. Detection Rate: Southern European 97%.

X-linked Adrenoleukodystrophy - Gene: ABCD1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000033:1-6. Detection Rate: Southern European 77%.

X-linked Alport Syndrome - Gene: COL4A5. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000495:1-51. Detection Rate: Southern European 96%.

X-linked Juvenile Retinoschisis - Gene: RS1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000330:1-6. Detection Rate: Southern European 98%.

X-linked Myotubular Myopathy - Gene: MTM1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000252:2-15. Detection Rate: Southern European 96%.

X-linked Severe Combined Immunodeficiency - Gene: IL2RG. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000206:1-8. Detection Rate: Southern European >99%.

Xeroderma Pigmentosum Group A - Gene: XPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000380:1-6. Detection Rate: Southern European >99%.

Xeroderma Pigmentosum Group C - Gene: XPC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004628:1-16. Detection Rate: Southern European 97%.

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378

FEMALE N/A

Risk Calculations

Below are the risk calculations for all conditions tested. Negative results do not rule out the possibility of being a carrier. Residual risk is an estimate of each patient's posttest likelihood of being a carrier, while the reproductive risk represents an estimated likelihood that the patients' future children could inherit each disease. These risks are inherent to all carrier-screening tests, may vary by ethnicity, are predicated on a negative family history, and are present even given a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. In addition, average carrier rates are estimated using incidence or prevalence data from published scientific literature and/or reputable databases, where available, and are incorporated into residual risk calculations for each population/ethnicity. When population-specific data is not available for a condition, average worldwide incidence or prevalence is used. Further, incidence and prevalence data are only collected for the specified phenotypes (which include primarily the classic or severe forms of disease) and may not include alternate or milder disease manifestations associated with the gene. Actual incidence rates, prevalence rates, and carrier rates, and therefore actual residual risks, may be higher or lower than the estimates provided. Carrier rates, incidence/prevalence, and/or residual risks are not provided for some genes with biological or heritable properties that would make these estimates inaccurate. A '†' symbol indicates a positive result. See the full clinical report for interpretation and details. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

Disease	DONOR 10612 Residual Risk	Reproductive Risk
6-pyruvoyl-tetrahydropterin Synthase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Adenosine Deaminase Deficiency	1 in 22,000	< 1 in 1,000,000
Alpha Thalassemia, HBA1/HBA2-related	Alpha globin status: aa/aa.	Not calculated
Alpha-mannosidosis	1 in 35,000	< 1 in 1,000,000
Alpha-sarcoglycanopathy	1 in 29,000	< 1 in 1,000,000
Alstrom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Andermann Syndrome	< 1 in 50,000	< 1 in 1,000,000
Argininemia	1 in 12,000	< 1 in 1,000,000
Argininosuccinic Aciduria	1 in 13,000	< 1 in 1,000,000
Aspartylglucosaminuria	< 1 in 50,000	< 1 in 1,000,000
Ataxia with Vitamin E Deficiency	< 1 in 50,000	< 1 in 1,000,000
Ataxia-telangiectasia	1 in 4,200	< 1 in 1,000,000
ATP7A-related Disorders	1 in 800,000	1 in 150,000
Autoimmune Polyglandular Syndrome Type 1	1 in 18,000	< 1 in 1,000,000
Autosomal Recessive Osteopetrosis Type 1	1 in 8,900	< 1 in 1,000,000
Autosomal Recessive Polycystic Kidney Disease, PKHD1-related	1 in 8,100	< 1 in 1,000,000
Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay	< 1 in 44,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS1-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS10-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS12-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS2-related	< 1 in 50,000	< 1 in 1,000,000
BCS1L-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Beta-sarcoglycanopathy	1 in 39,000	< 1 in 1,000,000
Biotinidase Deficiency	1 in 17,000	1 in 990,000
Bloom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Calpainopathy	1 in 9,400	< 1 in 1,000,000
Canavan Disease	1 in 9,700	< 1 in 1,000,000
Carbamoylphosphate Synthetase I Deficiency	< 1 in 57,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase IA Deficiency	< 1 in 50,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase II Deficiency	1 in 20,000	< 1 in 1,000,000
Cartilage-hair Hypoplasia	< 1 in 50,000	< 1 in 1,000,000
Cerebrotendinous Xanthomatosis	1 in 11,000	< 1 in 1,000,000
Citrullinemia Type 1	1 in 12,000	< 1 in 1,000,000
CLN3-related Neuronal Ceroid Lipofuscinosis	1 in 28,000	< 1 in 1,000,000
CLN5-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN8-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
Cohen Syndrome	< 1 in 15,000	< 1 in 1,000,000
COL4A3-related Alport Syndrome	1 in 3,400	< 1 in 1,000,000
COL4A4-related Alport Syndrome	1 in 21,000	< 1 in 1,000,000
Combined Pituitary Hormone Deficiency, PROP1-related	1 in 6,100	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP11B1-related	1 in 8,400	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP21A2-related	NM_000500.7(CYP21A2):c.844G>T(V282L) heterozygote [†]	1 in 270
Congenital Disorder of Glycosylation Type Ia	1 in 16,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation Type Ic	< 1 in 50,000	< 1 in 1,000,000

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378 FEMALE

N/A

DONOR 10612 Residual Risk Reproductive Risk Disease Congenital Disorder of Glycosylation, MPI-related < 1 in 50.000 < 1 in 1,000,000 **Costeff Optic Atrophy Syndrome** < 1 in 50,000 < 1 in 1,000,000 1 in 2,700 **Cystic Fibrosis** 1 in 290.000 Cystinosis 1 in 22,000 < 1 in 1,000,000 **D-bifunctional Protein Deficiency** 1 in 9,000 < 1 in 1,000,000 < 1 in 1,000,000 Delta-sarcoglycanopathy < 1 in 13,000 Dihydrolipoamide Dehydrogenase Deficiency < 1 in 50.000 < 1 in 1,000,000 < 1 in 1,000,000 Dysferlinopathy 1 in 11,000 Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) Not calculated Not calculated ERCC6-related Disorders 1 in 8.500 < 1 in 1,000,000 **ERCC8-related Disorders** < 1 in 16,000 < 1 in 1,000,000 EVC-related Ellis-van Creveld Syndrome 1 in 7,800 < 1 in 1,000,000 EVC2-related Ellis-van Creveld Syndrome 1 in 9,800 < 1 in 1,000,000 Fabry Disease < 1 in 1,000,000 1 in 80,000 Familial Dysautonomia < 1 in 50,000 < 1 in 1,000,000 Familial Hyperinsulinism, ABCC8-related 1 in 17.000 < 1 in 1,000,000 Familial Hyperinsulinism, KCNJ11-related < 1 in 50,000 < 1 in 1,000,000 Familial Mediterranean Fever 1 in 2,300 1 in 220,000 Fanconi Anemia Complementation Group A 1 in 2,800 < 1 in 1,000,000 Fanconi Anemia, FANCC-related < 1 in 50.000 < 1 in 1,000,000 **FKRP-related Disorders** < 1 in 1,000,000 1 in 28,000 **FKTN-related Disorders** < 1 in 50,000 < 1 in 1,000,000 Free Sialic Acid Storage Disorders < 1 in 30.000 < 1 in 1,000,000 Galactokinase Deficiency 1 in 30,000 < 1 in 1,000,000 Galactosemia 1 in 11,000 < 1 in 1,000,000 Gamma-sarcoglycanopathy 1 in 2,000 < 1 in 1,000,000 Gaucher Disease 1 in 260 1 in 110,000 GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness 1 in 2,500 1 in 260,000 GLB1-related Disorders 1 in 17.000 < 1 in 1,000,000 Glutaric Acidemia, GCDH-related 1 in 14,000 < 1 in 1,000,000 Glycine Encephalopathy, AMT-related 1 in 26,000 < 1 in 1,000,000 Glycine Encephalopathy, GLDC-related 1 in 2,100 < 1 in 1,000,000 < 1 in 1,000,000 Glycogen Storage Disease Type la 1 in 8.700 Glycogen Storage Disease Type Ib < 1 in 1,000,000 1 in 35.000 Glycogen Storage Disease Type III 1 in 16,000 < 1 in 1,000,000 < 1 in 1,000,000 **GNE** Myopathy < 1 in 50.000 **GNPTAB-related Disorders** 1 in 20,000 < 1 in 1,000,000 HADHA-related Disorders 1 in 25,000 < 1 in 1,000,000 Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell 1 in 710 1 in 22,000 Disease) Hereditary Fructose Intolerance 1 in 7,900 < 1 in 1,000,000 Hexosaminidase A Deficiency (Including Tay-Sachs Disease) 1 in 30.000 < 1 in 1,000,000 HMG-CoA Lyase Deficiency 1 in 18,000 < 1 in 1,000,000 Holocarboxylase Synthetase Deficiency 1 in 15,000 < 1 in 1,000,000 Homocystinuria, CBS-related 1 in 17,000 < 1 in 1,000,000 Hydrolethalus Syndrome < 1 in 50.000 < 1 in 1,000,000 Hypophosphatasia 1 in 27.000 < 1 in 1,000,000 Isovaleric Acidemia 1 in 22,000 < 1 in 1,000,000 Joubert Syndrome 2 < 1 in 50,000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMA3-related < 1 in 50,000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMB3-related 1 in 31,000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMC2-related < 1 in 1,000,000 < 1 in 50,000 Krabbe Disease 1 in 14,000 < 1 in 1,000,000 Leigh Syndrome, French-Canadian Type < 1 in 50,000 < 1 in 1,000,000 Lipoid Congenital Adrenal Hyperplasia < 1 in 50,000 < 1 in 1,000,000 Lysosomal Acid Lipase Deficiency 1 in 10,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type Ia < 1 in 1,000,000 1 in 13,000 Maple Syrup Urine Disease Type Ib 1 in 21,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type II < 1 in 1,000,000 1 in 7,300 Medium Chain Acyl-CoA Dehydrogenase Deficiency 1 in 6,100 < 1 in 1,000,000 Megalencephalic Leukoencephalopathy with Subcortical Cysts < 1 in 50,000 < 1 in 1,000,000 Metachromatic Leukodystrophy 1 in 16,000 < 1 in 1,000,000

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378 FEMALE

N/A

Disease	DONOR 10612	Pone duativo Piele
	Residual Risk	Reproductive Risk
Methylmalonic Acidemia, cblA Type	< 1 in 50,000	< 1 in 1,000,000
Methylmalonic Acidemia, cblB Type	< 1 in 50,000	< 1 in 1,000,000
Methylmalonic Acidemia, MMUT-related	1 in 9,600	< 1 in 1,000,000
Methylmalonic Aciduria and Homocystinuria, cblC Type	1 in 16,000	< 1 in 1,000,000
MKS1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Mucolipidosis III Gamma	< 1 in 20,000	< 1 in 1,000,000
Mucolipidosis IV	< 1 in 50,000	< 1 in 1,000,000
Mucopolysaccharidosis Type I	1 in 16,000	< 1 in 1,000,000
Mucopolysaccharidosis Type II	< 1 in 1,000,000	1 in 300,000
Mucopolysaccharidosis Type IIIA	1 in 16,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIB	1 in 21,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIC	1 in 47,000	< 1 in 1,000,000
Muscular Dystrophy, LAMA2-related	1 in 4,500	< 1 in 1,000,000
MYO7A-related Disorders	1 in 15,000	< 1 in 1,000,000
NEB-related Nemaline Myopathy	1 in 1,200	1 in 400,000
Nephrotic Syndrome, NPHS1-related	< 1 in 50,000	< 1 in 1,000,000
Nephrotic Syndrome, NPHS2-related	1 in 35,000	< 1 in 1,000,000
Neuronal Ceroid Lipofuscinosis, CLN6-related	1 in 39,000	< 1 in 1,000,000
Niemann-Pick Disease Type C1	1 in 11,000	< 1 in 1,000,000
Niemann-Pick Disease Type C1	< 1 in 50,000	< 1 in 1,000,000
Niemann-Pick Disease, SMPD1-related	1 in 25,000	< 1 in 1,000,000
Niemann-Pick Disease, SMPD I-related Nijmegen Breakage Syndrome	1 in 16,000	< 1 in 1,000,000
, , ,		
Ornithine Transcarbamylase Deficiency	< 1 in 1,000,000	1 in 140,000
PCCA-related Propionic Acidemia	1 in 4,200	< 1 in 1,000,000
PCCB-related Propionic Acidemia	1 in 22,000	< 1 in 1,000,000
PCDH15-related Disorders	1 in 3,300	< 1 in 1,000,000
Pendred Syndrome	NM_000441.1(SLC26A4):c3-2A>G heterozygote [†]	1 in 260
Peroxisome Biogenesis Disorder Type 1	1 in 16,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 3	1 in 44,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 4	1 in 9,300	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 5	< 1 in 71,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 6	< 1 in 50,000	< 1 in 1,000,000
Phenylalanine Hydroxylase Deficiency	1 in 4,100	1 in 690,000
POMGNT-related Disorders	< 1 in 12,000	< 1 in 1,000,000
Pompe Disease	1 in 15,000	< 1 in 1,000,000
PPT1-related Neuronal Ceroid Lipofuscinosis	1 in 7,700	< 1 in 1,000,000
Primary Carnitine Deficiency	1 in 16,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 1	1 in 17,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 2	< 1 in 50,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 3	1 in 13,000	< 1 in 1,000,000
Pycnodysostosis	1 in 43,000	< 1 in 1,000,000
Pyruvate Carboxylase Deficiency	1 in 25,000	< 1 in 1,000,000
Rhizomelic Chondrodysplasia Punctata Type 1	1 in 16,000	< 1 in 1,000,000
RTEL1-related Disorders		
	< 1 in 50,000	< 1 in 1,000,000
Sandhoff Disease	1 in 18,000	< 1 in 1,000,000
Short-chain Acyl-CoA Dehydrogenase Deficiency	1 in 9,700	< 1 in 1,000,000
Sjogren-Larsson Syndrome	< 1 in 12,000	< 1 in 1,000,000
SLC26A2-related Disorders	1 in 16,000	< 1 in 1,000,000
Smith-Lemli-Opitz Syndrome	1 in 9,400	< 1 in 1,000,000
Spastic Paraplegia Type 15	< 1 in 50,000	< 1 in 1,000,000
	Negative for g.27134T>G SNP	
Spinal Muscular Atrophy	SMN1: 2 copies	1 in 200,000
	1 in 890	
Spondylothoracic Dysostosis	< 1 in 50,000	< 1 in 1,000,000
GM1-related Autosomal Recessive Congenital Ichthyosis	1 in 22,000	< 1 in 1,000,000
TPP1-related Neuronal Ceroid Lipofuscinosis	1 in 30,000	< 1 in 1,000,000
Tyrosine Hydroxylase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Fyrosinemia Type I	1 in 16,000	< 1 in 1,000,000
Tyrosinemia Type II	1 in 25,000	< 1 in 1,000,000
USH1C-related Disorders	< 1 in 50,000	< 1 in 1,000,000
	= = / = = =	,
USH2A-related Disorders	1 in 6,500	< 1 in 1,000,000

MALE DONOR 10612 DOB: Ethnicity: Southern European Barcode: 11004512971378 FEMALE N/A

Disease	DONOR 10612 Residual Risk	Reproductive Risk
Very-long-chain Acyl-CoA Dehydrogenase Deficiency	1 in 20,000	< 1 in 1,000,000
Wilson Disease	1 in 9,000	< 1 in 1,000,000
X-linked Adrenal Hypoplasia Congenita	< 1 in 1,000,000	< 1 in 1,000,000
X-linked Adrenoleukodystrophy	1 in 120,000	1 in 56,000
X-linked Alport Syndrome	Not calculated	Not calculated
X-linked Juvenile Retinoschisis	< 1 in 1,000,000	1 in 40,000
X-linked Myotubular Myopathy	Not calculated	Not calculated
X-linked Severe Combined Immunodeficiency	< 1 in 1,000,000	1 in 200,000
Xeroderma Pigmentosum Group A	< 1 in 50,000	< 1 in 1,000,000
Xeroderma Pigmentosum Group C	1 in 7,300	< 1 in 1,000,000