

RESULTS RECIPIENT
SEATTLE SPERM BANK

Attn: Jeffrey Olliffe 4915 25th Ave NE Ste 204W Seattle, WA 98105

Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 11/10/2021 MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other Caucasian

Sample Type: EDTA Blood
Date of Collection:

Date Received: 11/05/2021 Date Tested: 11/10/2021 Barcode: 11004512990642 Accession ID: CSLLUEVY23UJWHJ Indication: Egg or sperm donor FEMALE N/A

POSITIVE: CARRIER

Foresight® Carrier Screen

ABOUT THIS TEST

The **Myriad Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	DONOR 10601	Partner
Panel Information	Foresight Carrier Screen Universal Panel Fundamental Plus Panel Fundamental Panel (175 conditions tested)	N/A
POSITIVE: CARRIER	■ CARRIER* NM_000152.3(GAA):c.2238G>C (W746C) heterozygote	The reproductive risk presented is based on a hypothetical pairing with a partner of the
Pompe Disease		
Reproductive Risk: 1 in 400	(W740C) Heterozygote	same ethnic group. Carrier
Inheritance: Autosomal Recessive		testing should be considered.
		See "Next Steps".

^{*}Carriers generally do not experience symptoms.

No disease-causing mutations were detected in any other gene tested. A complete list of all conditions tested can be found on page 7.

CLINICAL NOTES

None

NEXT STEPS

- Carrier testing should be considered for the diseases specified above for the patient's partner.
- Patients are recommended to discuss reproductive risks with their health care provider or a genetic counselor. Patients may also wish to discuss any positive results with blood relatives, as there is an increased chance that they are also carriers.

MALE
DONOR 10601
DOB:
Ethnicity: Mix

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Positive: carrier Pompe Disease

Gene: GAA | Inheritance Pattern: Autosomal Recessive

Reproductive risk: 1 in 400 Risk before testing: 1 in 40,000

DONOR 10601	No partner tested
♣ Carrier	N/A
NM_000152.3(GAA):c.2238G>C(W746C) heterozygote	N/A
Sequencing with copy number analysis (v3.1)	N/A
This individual is a carrier of Pompe disease. Carriers generally do not experience symptoms.	N/A
98%	N/A
NM_000152:2-20.	N/A
	Carrier NM_000152.3(GAA):c.2238G>C(W746C) heterozygote Sequencing with copy number analysis (v3.1) This individual is a carrier of Pompe disease. Carriers generally do not experience symptoms.

What Is Pompe Disease?

Pompe disease also called glycogen storage disease type II, is an inherited disorder where the body fails to produce enough alphaglucosidase (also called maltase), an enzyme needed to break down a type of sugar called glycogen. Without adequate amounts of alpha-glucosidase, glycogen builds up in the body, particularly in the muscles, and damages cells. Pompe disease is caused by mutations in the *GAA* gene. People with Pompe disease have muscle weakness that progresses over time, mainly in the muscles used for movement and breathing. The heart may also be affected. The level of alpha-glucosidase remaining is correlated to the severity of symptoms, the age of onset, and disease progression.

Pompe disease is separated into two forms, the infantile-onset form and the late-onset form. These forms are described below.

INFANTILE-ONSET FORM

Infantile-onset Pompe disease is the most severe form because alpha-glucosidase function is entirely absent. Muscle weakness and poor muscle tone causes infants to have trouble moving, holding up their heads, and feeding. They have trouble gaining weight and grow at a slower pace. Infants also have trouble breathing, which can worsen with lung infections. They typically have enlarged hearts, livers, and tongues. Disease progression is usually rapid, and the most common causes of death are heart or lung failure.

LATE-ONSET FORM

Late-onset Pompe disease is less severe because some alpha-glucosidase is still present. Symptoms start with muscle weakness and breathing problems. Some individuals with late-onset Pompe disease have heart problems but without an enlarged heart. They may eventually lose the ability to walk and require a wheelchair, and they may need mechanical assistance to breathe. Disease progression is more gradual, and the most common cause of death is lung failure.

How Common Is Pompe Disease?

The incidence of Pompe disease is approximately 1 in 100,000. Infantile-onset Pompe disease is the most common form.

MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

How Is Pompe Disease Treated?

The FDA has approved enzyme replacement therapy for both infantile-onset and late-onset Pompe disease. Enzyme replacement therapy can help maintain a healthy heart size and normal heart function and may also help improve muscle tone and strength. Individuals need to follow a protein-rich diet, attend physical therapy, and monitor and treat lung infections.

What Is the Prognosis for a Person with Pompe Disease?

In infantile-onset Pompe disease, symptoms may begin at birth but more often begin in the first few months of life. Patients typically die within the first year of life, although enzyme replacement therapy can now prolong life into early childhood. In late-onset Pompe disease, symptoms can begin at any age from childhood to adulthood, and the lifespan depends on how early symptoms begin. The most common cause of death in individuals with Pompe disease is lung failure.

MALE DONOR 10601 DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Methods and Limitations

DONOR 10601 [Foresight Carrier Screen]: Sequencing with copy number analysis, spinal muscular atrophy, analysis of homologous regions, and alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis (Assay(s): DTS v3.2).

Sequencing with copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to analyze the genes listed in the Conditions Tested section of the report. Except where otherwise noted, the region of interest (ROI) comprises the indicated coding regions and 20 non-coding bases flanking each region. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected non-coding bases are excluded from the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. Select genes or regions for which pseudogenes or other regions of homology impede reliable variant detection may be assayed using alternate technology, or they may be excluded from the ROI. *CFTR* and *DMD* testing includes analysis for exon-level deletions and duplications with an average sensitivity of ~99%. Only exon-level deletions are assayed for other genes on the panel and such deletions are detected with a sensitivity of ≥75%. Selected founder deletions may be detected at slightly higher sensitivity. Affected exons and/or breakpoints of copy number variants are estimated from junction reads, where available, or using the positions of affected probes. Only exons known to be included in the region affected by a copy number variant are provided in the variant nomenclature. In some cases, the copy number variant may be larger or smaller than indicated. If *GJB2* is tested, large upstream deletions involving the *GJB6* and/or *CRYL1* genes that may affect the expression of *GJB2* are also analyzed.

Spinal muscular atrophy

Targeted copy number analysis via high-throughput sequencing is used to determine the copy number of exon 7 of the *SMN1* gene. Other genetic variants may interfere with this analysis. Some individuals with two copies of *SMN1* are "silent" carriers with both *SMN1* genes on one chromosome and no copies of the gene on the other chromosome. This is more likely in individuals who have two copies of the *SMN1* gene and are positive for the g.27134T>G single-nucleotide polymorphism (SNP) (PMID: 9199562, 23788250, and 28676062), which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have two copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read-depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss-of-function variants in certain genes that have homology to other genomic regions. The precise breakpoints of large deletions in these genes cannot be determined but are instead estimated from copy number analysis. Pseudogenes may interfere with this analysis, especially when many pseudogene copies are present.

If CYP21A2 is tested, patients who have one or more additional copies of the CYP21A2 gene and a pathogenic variant may or may not be a carrier of 21-hydroxylase deficient CAH, depending on the chromosomal location of the variants (phase). Benign CYP21A2 gene duplications and/or triplications will only be reported in this context. Some individuals with two functional CYP21A2 gene copies may be "silent" carriers, with two gene copies resulting from a duplication on one chromosome and a gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay. Given that the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are based only on the published incidence for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate for CAH, especially in the aforementioned populations, as they do not account for non-classic CAH.

MALE DONOR 10601 DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to identify sequence variation and functional gene copies within the region of interest (ROI) of *HBA1* and *HBA2*, which includes the listed exons plus 20 intronic flanking bases. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. For large deletions or duplications in these genes, the precise breakpoints cannot be determined but are instead estimated from copy number analysis. This assay has been validated to detect up to two additional copies of each alpha globin gene. In rare instances where assay results suggest greater than two additional copies are present, this will be noted but the specific number of gene copies observed will not be provided.

Extensive sequence homology exists between *HBA1* and *HBA2*. This sequence homology can prevent certain variants from being localized to one gene over the other. In these instances, variant nomenclature will be provided for both genes. If follow-up testing is indicated for patients with the nomenclature provided for both genes, both *HBA1* and *HBA2* should be tested. Some individuals with four functional alpha globin gene copies may be "silent" carriers, with three gene copies resulting from triplication on one chromosome and a single gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay.

Interpretation of reported variants

The classification and interpretation of all variants identified in this assay reflects the current state of Myriad's scientific understanding at the time this report was issued. Variants are classified according to internally defined criteria, which are compatible with the ACMG Standards and Guidelines for the Interpretation of Sequence Variants (PMID: 25741868). Variants that have been determined by Myriad to be disease-causing or likely disease-causing (i.e. pathogenic or likely pathogenic) are reported. Benign variants, variants of uncertain clinical significance (VUS), and variants not directly associated with the specified disease phenotype(s) are not reported. Variant classification and interpretation may change for a variety of reasons, including but not limited to, improvements to classification techniques, availability of additional scientific information, and observation of a variant in more patients. If the classification of one or more variants identified in this patient changes, an updated report reflecting the new classification generally will not be issued. If an updated report is issued, the variants reported may change based on their current classification. This can include changes to the variants displayed in gene specific 'variants tested' sections. Healthcare providers may contact Myriad directly to request updated variant classification information specific to this test result.

Limitations

The MWH Foresight Carrier Screen is designed to detect and report germline (constitutional) alterations. Mosaic (somatic) variation may not be detected, and if it is detected, it may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes (phase). This test is not designed to detect sex-chromosome copy number variations. If present, sex-chromosome abnormalities may significantly reduce test sensitivity for X-linked conditions. Variant interpretation and residual and reproductive risk estimations assume a normal karyotype and may be different for individuals with abnormal karyotypes. The test does not fully address all inherited forms of intellectual disability, birth defects, or heritable diseases. Furthermore, not all forms of genetic variation are detected by this assay (i.e., duplications [except in specified genes], chromosomal rearrangements, structural abnormalities, etc.). Additional testing may be appropriate for some individuals. Pseudogenes and other regions of homology may interfere with this analysis. In an unknown number of cases, other genetic variation may interfere with variant detection. Rare carrier states where complementary changes exist between the chromosomes may not be detected by the assay. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions, and technical or analytical errors.

Detection rates are determined using published scientific literature and/or reputable databases, when available, to estimate the fraction of disease alleles, weighted by frequency, that the methodology is predicted to be able or unable to detect. Detection rates are approximate and only account for analytical sensitivity. Certain variants that have been previously described in the literature may not be reported, if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease specific rates of *de novo* variation.

This test was developed, and its performance characteristics determined by, Myriad Women's Health, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: #05D1102604.

RESULTS RECIPIENT

SEATTLE SPERM BANK

Attn: Jeffrey Olliffe

NPI: 1306838271

Report Date: 11/10/2021

MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Incidental Findings

Unless otherwise indicated, these results and interpretations are limited to the specific disease panel(s) requested by the ordering healthcare provider. In some cases, standard data analyses may identify genetic findings beyond the region(s) of interest specified by the test, and such findings may not be reported. These findings may include genomic abnormalities with major, minor, or no, clinical significance.

If you have questions or would like more information about any of the test methods or limitations, please contact (888) 268-6795.

Resources

GENOME CONNECT | http://www.genomeconnect.org

Patients can share their reports using research registries such as Genome Connect, an online research registry building a genetics and health knowledge base. Genome Connect provides patients, physicians, and researchers an opportunity to share genetic information to support the study of the impact of genetic variation on health conditions.

SENIOR LABORATORY DIRECTOR

Karla R. Bowles, PhD, FACMG, CGMB

Kenle R. Boules

Report content approved by Catherine Spellicy, PhD, FACMG, CGMBS on Nov 10, 2021

MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Conditions Tested

6-pyruvoyl-tetrahydropterin Synthase Deficiency - Gene: PTS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000317:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Adenosine Deaminase Deficiency - Gene: ADA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000022:1-12. Detection Rate: Mixed or Other Caucasian 98%.

Alpha Thalassemia, HBA1/HBA2-related - Genes: HBA1, HBA2. Autosomal Recessive. Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis. Exons: NM_000517:1-3; NM_000558:1-3. Variants (16): -(alpha)20.5, --BRIT, --MEDI, --MEDII, --SEA, --THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, Poly(A) AATAAA>AATA--, Poly(A) AATAAA>AATAAG, Poly(A) AATAAA>AATGAA, anti3.7, anti4.2, del HS-40. Detection Rate: Not calculated due to rarity of disease in this individual's reported ethnicity.

Alpha-mannosidosis - **Gene:** MAN2B1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000528:1-23. **Detection Rate:** Mixed or Other Caucasian >99%.

Alpha-sarcoglycanopathy - **Gene:** SGCA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000023:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Alstrom Syndrome - Gene: ALMS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_015120:1-23. **Detection Rate:** Mixed or Other Caucasian >99%.

Andermann Syndrome - Gene: SLC12A6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133647:1-25. Detection Rate: Mixed or Other Caucasian >99%

Argininemia - Gene: ARG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000045:1-8. Detection Rate: Mixed or Other Caucasian 97%. Argininosuccinic Aciduria - Gene: ASL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001024943:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Aspartylglucosaminuria - **Gene**: AGA. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000027:1-9. **Detection Rate**: Mixed or Other Caucasian >99%.

Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000370:1-5. Detection Rate: Mixed or Other Caucasian >99%

Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000051:2-63. Detection Rate: Mixed or Other Caucasian 96%.

ATP7A-related Disorders - Gene: ATP7A. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000052:2-23. Detection Rate: Mixed or Other Caucasian 90%.

Autoimmune Polyglandular Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000383:1-14. **Detection Rate:** Mixed or Other Caucasian >99%.

Autosomal Recessive Osteopetrosis Type 1 - Gene: TCIRG1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_006019:2-20. **Detection Rate:** Mixed or Other Caucasian 96%.

Autosomal Recessive Polycystic Kidney Disease, PKHD1-related - Gene: PKHD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138694 2-67. Detection Rate: Mixed or Other Caucasian >99%.

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay - Gene: SACS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014363 2-10. Detection Rate: Mixed or Other Caucasian 99%.

Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_024649:1-17. **Detection Rate:** Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS10-related - Gene: BBS10. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024685:1-2. **Detection Rate:** Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS12-related - Gene: BBS12. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_152618:2. Detection Rate: Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS2-related - Gene: BBS2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_031885:1-17. **Detection Rate:** Mixed or Other Caucasian >99%.

BCS1L-related Disorders - Gene: BCS1L. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004328:3-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Beta-sarcoglycanopathy - **Gene**: SGCB. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000232:1-6. **Detection Rate**: Mixed or Other Caucasian >99%.

Biotinidase Deficiency - **Gene**: BTD. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000060:1-4. **Detection Rate**: Mixed or Other Caucasian >99%.

Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000057:2-22. **Detection Rate:** Mixed or Other Caucasian >99%.

Calpainopathy - Gene: CAPN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000070:1-24. Detection Rate: Mixed or Other Caucasian 99%.

Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000049:1-6. Detection Rate: Mixed or Other Caucasian 98%.

Carbamoylphosphate Synthetase I Deficiency - Gene: CPS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001875:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001876:2-19. Detection Rate: Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000098:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NR_003051:1. Detection Rate: Mixed or Other Caucasian >99%.

Cerebrotendinous Xanthomatosis - Gene: CYP27A1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000784:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000050:3-16. **Detection Rate:** Mixed or Other Caucasian >99%.

CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001042432 2-16. Detection Rate: Mixed or Other Caucasian >99%.

CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006493:1-4. Detection Rate: Mixed or Other Caucasian >99%.

CLN8-related Neuronal Ceroid Lipofuscinosis - Gene: CLN8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_018941:2-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Cohen Syndrome - Gene: VPS13B. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017890:2-62. **Detection Rate:** Mixed or Other Caucasian 97%.

MALE

DONOR 10601

DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

COL4A3-related Alport Syndrome - Gene: COL4A3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000091:1-52. Detection Rate: Mixed or Other Caucasian 94%.

COL4A4-related Alport Syndrome - Gene: COL4A4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000092:2-48. Detection Rate: Mixed or Other Caucasian >99%.

Combined Pituitary Hormone Deficiency, PROP1-related - Gene: PROP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006261:1-3. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Adrenal Hyperplasia, CYP11B1-related - Gene: CYP11B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000497:1-9.

Detection Rate: Mixed or Other Caucasian 97%.

Congenital Adrenal Hyperplasia, CYP21A2-related - Gene: CYP21A2. Autosomal Recessive. Analysis of homologous regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V282L, [I237N;V238E;M240K], c.293-13C>G. Detection Rate: Mixed or Other Caucasian 96%.

Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000303:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Disorder of Glycosylation Type Ic - Gene: ALG6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_013339:2-15. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Disorder of Glycosylation, MPI-related - Gene: MPI. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002435:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_025136:1-2. Detection Rate: Mixed or Other Caucasian >99%

Cystic Fibrosis - Gene: CFTR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. Detection Rate: Mixed or Other Caucasian >99%. Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004937:3-12. Detection Rate: Mixed or Other Caucasian

D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000414:1-24. **Detection Rate**: Mixed or Other Caucasian 98%.

>99%

Delta-sarcoglycanopathy - **Gene:** SGCD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000337:2-9. **Detection Rate:** Mixed or Other Caucasian 96%.

Dihydrolipoamide Dehydrogenase Deficiency - Gene: DLD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000108:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Dysferlinopathy - **Gene**: DYSF. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_003494:1-55. **Detection Rate**: Mixed or Other Caucasian 98%.

Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) - Gene: DMD. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_004006:1-79. Detection Rate: Mixed or Other Caucasian 99%.

ERCC6-related Disorders - **Gene**: ERCC6. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000124:2-21. **Detection Rate**: Mixed or Other Caucasian 96%.

ERCC8-related Disorders - **Gene:** ERCC8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000082:1-12. **Detection Rate:** Mixed or Other Caucasian 97%.

EVC-related Ellis-van Creveld Syndrome - Gene: EVC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153717:1-21. **Detection Rate:** Mixed or Other Caucasian 96%.

EVC2-related Ellis-van Creveld Syndrome - Gene: EVC2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_147127:1-22. **Detection Rate:** Mixed or Other Caucasian 98%.

Fabry Disease - Gene: GLA. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000169:1-7. Detection Rate: Mixed or Other Caucasian 98%.

Familial Dysautonomia - Gene: ELP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003640:2-37. Detection Rate: Mixed or Other Caucasian >99%.

FEMALE

N/A

Familial Hyperinsulinism, ABCC8-related - Gene: ABCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000352:1-39. Detection Rate: Mixed or Other Caucasian >99%.

Familial Hyperinsulinism, KCNJ11-related - Gene: KCNJ11. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000525:1. Detection Rate: Mixed or Other Caucasian >99%.

Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000243:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Fanconi Anemia Complementation Group A - Gene: FANCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000135:1-43. Detection Rate: Mixed or Other Caucasian 92%.

Fanconi Anemia, FANCC-related - Gene: FANCC. Autosomal Recessive.
Sequencing with copy number analysis. Exons: NM_000136:2-15. Detection Rate:
Mixed or Other Caucasian >99%.

FKRP-related Disorders - Gene: FKRP. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_024301:4. **Detection Rate:** Mixed or Other Caucasian >99%.

FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_001079802:3-11. **Detection Rate**: Mixed or Other Caucasian >99%.

Free Sialic Acid Storage Disorders - Gene: SLC17A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012434:1-11. Detection Rate: Mixed or Other Caucasian 98%.

Galactokinase Deficiency - **Gene**: GALK1. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000154:1-8. **Detection Rate**: Mixed or Other Caucasian >99%.

Galactosemia - **Gene:** GALT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000155:1-11. **Detection Rate:** Mixed or Other Caucasian >99%

Gamma-sarcoglycanopathy - **Gene:** SGCG. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000231:2-8. **Detection Rate:** Mixed or Other Caucasian 87%.

Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of homologous regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: Mixed or Other Caucasian 60%.

GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness - Gene: GJB2.

Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004004:1-2. Detection Rate: Mixed or Other Caucasian >99%.

GLB1-related Disorders - Gene: GLB1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000404:1-16. **Detection Rate:** Mixed or Other Caucasian >99%.

Glutaric Acidemia, GCDH-related - Gene: GCDH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000159:2-12. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycine Encephalopathy, AMT-related - Gene: AMT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000481:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycine Encephalopathy, GLDC-related - Gene: GLDC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000170:1-25. **Detection Rate:** Mixed or Other Caucasian 94%.

Glycogen Storage Disease Type Ia - Gene: G6PC1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000151:1-5. **Detection Rate:** Mixed or Other Caucasian 98%.

Glycogen Storage Disease Type Ib - **Gene:** SLC37A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001164277 3-11. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycogen Storage Disease Type III - Gene: AGL. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000642:2-34. **Detection Rate:** Mixed or Other Caucasian >99%.

MALE **DONOR 10601** DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

GNE Myopathy - Gene: GNE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001128227:1-12. Detection Rate: Mixed or Other Caucasian >99%.

GNPTAB-related Disorders - Gene: GNPTAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024312:1-21. Detection Rate: Mixed or Other Caucasian >99%.

HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000182:1-20. Detection Rate: Mixed or Other Caucasian >99%

Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000518:1-3. Detection Rate: Mixed or Other Caucasian >99%. Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000035:2-9. Detection Rate: Mixed or Other Caucasian >99%

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM 000520:1-14. Detection Rate: Mixed or Other Caucasian >99%.

HMG-CoA Lyase Deficiency - Gene: HMGCL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000191:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Holocarboxylase Synthetase Deficiency - Gene: HLCS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000411:4-12. Detection Rate: Mixed or Other Caucasian >99%

Homocystinuria, CBS-related - Gene: CBS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000071:3-17. Detection Rate: Mixed or Other Caucasian >99%

Hydrolethalus Syndrome - Gene: HYLS1. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_145014:4. Detection Rate: Mixed or Other Caucasian >99%

Hypophosphatasia - Gene: ALPL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000478:2-12. Detection Rate: Mixed or Other

Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002225:1-12. Detection Rate: Mixed or Other Caucasian >99%

Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001173990:1-5. Detection Rate: Mixed or Other Caucasian >99%

Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000227:1-38. Detection Rate: Mixed or Other Caucasian >99%

Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000228:2-23. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005562:1-23. Detection Rate: Mixed or Other Caucasian >99%.

Krabbe Disease - Gene: GALC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000153:1-17. Detection Rate: Mixed or Other Caucasian >99%

Leigh Syndrome, French-Canadian Type - Gene: LRPPRC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133259:1-38. Detection Rate: Mixed or Other Caucasian >99%

Lipoid Congenital Adrenal Hyperplasia - Gene: STAR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000349:1-7. Detection Rate: Mixed or Other Caucasian >99%.

Lysosomal Acid Lipase Deficiency - Gene: LIPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000235:2-10. Detection Rate: Mixed or Other Caucasian 98%.

Maple Syrup Urine Disease Type Ia - Gene: BCKDHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000709:1-9. Detection Rate: Mixed or Other Caucasian >99%

Maple Syrup Urine Disease Type Ib - Gene: BCKDHB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_183050:1-10. Detection Rate: Mixed or Other Caucasian >99%

FEMALE

N/A

Maple Syrup Urine Disease Type II - Gene: DBT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001918:1-11. Detection Rate: Mixed or Other Caucasian 97%.

Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM 000016:1-12. Detection Rate: Mixed or Other Caucasian >99%.

Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015166 2-12. Detection Rate: Mixed or Other Caucasian >99%.

Metachromatic Leukodystrophy - Gene: ARSA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000487:1-8. Detection Rate: Mixed or Other

Methylmalonic Acidemia, cblA Type - Gene: MMAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_172250:2-7. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, cblB Type - Gene: MMAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_052845:1-9. Detection Rate: Mixed or Other Caucasian >99%

Methylmalonic Acidemia, MMUT-related - Gene: MMUT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000255:2-13. Detection Rate: Mixed or Other Caucasian >99%

Methylmalonic Aciduria and Homocystinuria, cblC Type - Gene: MMACHC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015506:1-4. Detection Rate: Mixed or Other Caucasian >99%.

MKS1-related Disorders - Gene: MKS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017777:1-18. Detection Rate: Mixed or Other Caucasian >99%.

Mucolipidosis III Gamma - Gene: GNPTG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032520:1-11. Detection Rate: Mixed or Other Caucasian 98%

Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_020533:1-14. Detection Rate: Mixed or Other Caucasian >99%

Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000203:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type II - Gene: IDS. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000202:1-9. Detection Rate: Mixed or Other

Mucopolysaccharidosis Type IIIA - Gene: SGSH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000199:1-8. Detection Rate: Mixed or Other Caucasian >99%

Mucopolysaccharidosis Type IIIB - Gene: NAGLU. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000263:1-6. Detection Rate: Mixed or Other Caucasian >99%

Mucopolysaccharidosis Type IIIC - Gene: HGSNAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_152419:1-18. Detection Rate: Mixed or Other Caucasian >99%

Muscular Dystrophy, LAMA2-related - Gene: LAMA2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000426:1-43,45-65. Detection Rate: Mixed or Other Caucasian 98%

MYO7A-related Disorders - Gene: MYO7A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000260:2-49. Detection Rate: Mixed or Other

NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001271208:3-80,117-183. Detection Rate: Mixed or Other Caucasian 92%.

Nephrotic Syndrome, NPHS1-related - Gene: NPHS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004646:1-29. Detection Rate: Mixed or Other Caucasian >99%.

MALE DONOR 10601

DOB: Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE R 10601 N/A

Nephrotic Syndrome, NPHS2-related - Gene: NPHS2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_014625:1-8. **Detection Rate:** Mixed or Other Caucasian >99%.

Neuronal Ceroid Lipofuscinosis, CLN6-related - Gene: CLN6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017882:1-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C1 - Gene: NPC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000271:1-25. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C2 - Gene: NPC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006432:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease, SMPD1-related - Gene: SMPD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000543:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002485:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Ornithine Transcarbamylase Deficiency - Gene: OTC. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000531:1-10. Detection Rate: Mixed or Other Caucasian 97%.

PCCA-related Propionic Acidemia - Gene: PCCA. Autosomal Recessive.
Sequencing with copy number analysis. Exons: NM_000282:1-24. Detection Rate: Mixed or Other Caucasian 95%.

PCCB-related Propionic Acidemia - Gene: PCCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000532:1-15. Detection Rate: Mixed or Other Caucasian >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_033056:2-33. Detection Rate: Mixed or Other Caucasian 93%.

Pendred Syndrome - Gene: SLC26A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000441:2-21. **Detection Rate:** Mixed or Other Caucasian >99%

Peroxisome Biogenesis Disorder Type 1 - Gene: PEX1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000466:1-24. Detection Rate: Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 3 - Gene: PEX12. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000286:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 4 - Gene: PEX6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000287:1-17. **Detection Rate:** Mixed or Other Caucasian 97%.

Peroxisome Biogenesis Disorder Type 5 - Gene: PEX2. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000318:4. Detection Rate: Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 6 - Gene: PEX10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153818:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Phenylalanine Hydroxylase Deficiency - Gene: PAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000277:1-13. Detection Rate: Mixed or Other Caucasian >99%.

POMGNT-related Disorders - Gene: POMGNT1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017739:2-22. **Detection Rate:** Mixed or Other Caucasian 96%.

Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000152:2-20. Detection Rate: Mixed or Other Caucasian 98%. PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000310:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Primary Carnitine Deficiency - Gene: SLC22A5. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_003060:1-10. **Detection Rate:** Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000030:1-11. **Detection Rate**: Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 2 - Gene: GRHPR. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_012203:1-9. **Detection Rate:** Mixed or Other Caucasian >99%

Primary Hyperoxaluria Type 3 - Gene: HOGA1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_138413:1-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000396:2-8. **Detection Rate**: Mixed or Other Caucasian >99%.

Pyruvate Carboxylase Deficiency - Gene: PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000920:3-22. **Detection Rate:** Mixed or Other Caucasian >99%.

Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000288:1-10. Detection Rate: Mixed or Other Caucasian >99%.

RTEL1-related Disorders - Gene: RTEL1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032957:2-35. Detection Rate: Mixed or Other Caucasian >99%.

Sandhoff Disease - Gene: HEXB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000521:1-14. Detection Rate: Mixed or Other Caucasian 98%.

Short-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000017:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000382:1-10. **Detection Rate:** Mixed or Other Caucasian 96%.

SLC26A2-related Disorders - Gene: SLC26A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000112:2-3. Detection Rate: Mixed or Other Caucasian >99%

Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001360:3-9. Detection Rate: Mixed or Other Caucasian >99%.

Spastic Paraplegia Type 15 - Gene: ZFYVE26. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_015346:2-42. **Detection Rate:** Mixed or Other Caucasian >99%.

Spinal Muscular Atrophy - Gene: SMN1. Autosomal Recessive. Spinal muscular atrophy. Variant (1): SMN1 copy number. Detection Rate: Mixed or Other

Spondylothoracic Dysostosis - Gene: MESP2. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_001039958:1-2. **Detection Rate**: Mixed or Other Caucasian >99%.

TGM1-related Autosomal Recessive Congenital Ichthyosis - Gene: TGM1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000359 2-15. Detection Rate: Mixed or Other Caucasian >99%.

TPP1-related Neuronal Ceroid Lipofuscinosis - Gene: TPP1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000391:1-13. **Detection Rate:** Mixed or Other Caucasian >99%.

Tyrosine Hydroxylase Deficiency - Gene: TH. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_199292:1-14. **Detection Rate**: Mixed or Other Caucasian >99%.

Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000137:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosinemia Type II - **Gene**: TAT. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000353:2-12. **Detection Rate**: Mixed or Other Caucasian >99%.

USH1C-related Disorders - **Gene:** USH1C. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_005709:1-21. **Detection Rate:** Mixed or Other Caucasian >99%.

MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

USH2A-related Disorders - **Gene:** USH2A. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_206933:2-72. **Detection Rate:** Mixed or Other Caucasian 98%.

Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_174878:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Very-long-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000018:1-20. Detection Rate: Mixed or Other Caucasian >99%.

Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000053:1-21. **Detection Rate:** Mixed or Other Caucasian >99%.

X-linked Adrenal Hypoplasia Congenita - Gene: NR0B1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000475:1-2. Detection Rate: Mixed or Other Caucasian 97%.

X-linked Adrenoleukodystrophy - Gene: ABCD1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000033:1-6. Detection Rate: Mixed or Other Caucasian 77%.

X-linked Alport Syndrome - Gene: COL4A5. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000495:1-51. Detection Rate: Mixed or Other Caucasian 96%.

X-linked Juvenile Retinoschisis - Gene: RS1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000330:1-6. Detection Rate: Mixed or Other Caucasian 98%.

X-linked Myotubular Myopathy - Gene: MTM1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000252:2-15. Detection Rate: Mixed or Other Caucasian 96%.

X-linked Severe Combined Immunodeficiency - Gene: IL2RG. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000206:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group A - **Gene**: XPA. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000380:1-6. **Detection Rate**: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group C - Gene: XPC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004628:1-16. Detection Rate: Mixed or Other Caucasian 97%.

MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Risk Calculations

Below are the risk calculations for all conditions tested. Negative results do not rule out the possibility of being a carrier. Residual risk is an estimate of each patient's post-test likelihood of being a carrier, while the reproductive risk represents an estimated likelihood that the patients' future children could inherit each disease. These risks are inherent to all carrier-screening tests, may vary by ethnicity, are predicated on a negative family history, and are present even given a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. In addition, average carrier rates are estimated using incidence or prevalence data from published scientific literature and/or reputable databases, where available, and are incorporated into residual risk calculations for each population/ethnicity. When population-specific data is not available for a condition, average worldwide incidence or prevalence is used. Further, incidence and prevalence data are only collected for the specified phenotypes (which include primarily the classic or severe forms of disease) and may not include alternate or milder disease manifestations associated with the gene. Actual incidence rates, prevalence rates, and carrier rates, and therefore actual residual risks, may be higher or lower than the estimates provided. Carrier rates, incidence/prevalence, and/or residual risks are not provided for some genes with biological or heritable properties that would make these estimates inaccurate. A '†' symbol indicates a positive result. See the full clinical report for interpretation and details. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

Disease	DONOR 10601 Residual Risk	Reproductive Risk
6-pyruvoyl-tetrahydropterin Synthase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Adenosine Deaminase Deficiency	1 in 22,000	< 1 in 1,000,000
Alpha Thalassemia, HBA1/HBA2-related	Alpha globin status: aa/aa.	Not calculated
Alpha-mannosidosis	1 in 35,000	< 1 in 1,000,000
Alpha-sarcoglycanopathy	< 1 in 50,000	< 1 in 1,000,000
Alstrom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Andermann Syndrome	< 1 in 50,000	< 1 in 1,000,000
Argininemia	1 in 12,000	< 1 in 1,000,000
Argininosuccinic Aciduria	1 in 15,000	< 1 in 1,000,000
Aspartylglucosaminuria	< 1 in 50,000	< 1 in 1,000,000
Ataxia with Vitamin E Deficiency	< 1 in 50,000	< 1 in 1,000,000
Ataxia-telangiectasia	1 in 4,200	< 1 in 1,000,000
ATP7A-related Disorders	< 1 in 1,000,000	1 in 250,000
Autoimmune Polyglandular Syndrome Type 1	1 in 15,000	< 1 in 1,000,000
Autosomal Recessive Osteopetrosis Type 1	1 in 8,900	< 1 in 1,000,000
Autosomal Recessive Polycystic Kidney Disease, PKHD1-related	1 in 8,100	< 1 in 1,000,000
Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay	< 1 in 44,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS1-related	1 in 32,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS10-related	1 in 42,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS12-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS2-related	< 1 in 50,000	< 1 in 1,000,000
BCS1L-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Beta-sarcoglycanopathy	1 in 39,000	< 1 in 1,000,000
Biotinidase Deficiency	1 in 13,000	1 in 650,000
Bloom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Calpainopathy	1 in 13,000	< 1 in 1,000,000
Canavan Disease	1 in 9,700	< 1 in 1,000,000
Carbamoylphosphate Synthetase I Deficiency	< 1 in 57,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase IA Deficiency	< 1 in 50,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase II Deficiency	1 in 25,000	< 1 in 1,000,000
Cartilage-hair Hypoplasia	< 1 in 50,000	< 1 in 1,000,000
Cerebrotendinous Xanthomatosis	1 in 11,000	< 1 in 1,000,000
Citrullinemia Type 1	1 in 14,000	< 1 in 1,000,000
CLN3-related Neuronal Ceroid Lipofuscinosis	1 in 8,600	< 1 in 1,000,000
CLN5-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN8-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
Cohen Syndrome	< 1 in 15,000	< 1 in 1,000,000
COL4A3-related Alport Syndrome	1 in 3,400	< 1 in 1,000,000
COL4A4-related Alport Syndrome	1 in 35,000	< 1 in 1,000,000
Combined Pituitary Hormone Deficiency, PROP1-related	1 in 6,100	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP11B1-related	1 in 8,400	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP21A2-related	1 in 1,300	1 in 280,000
Congenital Disorder of Glycosylation Type Ia	1 in 16,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation Type Ic	< 1 in 50,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation, MPI-related	< 1 in 50,000	< 1 in 1,000,000

MALE **DONOR 10601** DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Disease	DONOR 10601 Residual Risk	Reproductive Risk
Costeff Optic Atrophy Syndrome	< 1 in 50,000	< 1 in 1,000,000
Cystic Fibrosis	1 in 3,000	1 in 360,000
Cystinosis	1 in 22,000	< 1 in 1,000,000
D-bifunctional Protein Deficiency	1 in 9,000	< 1 in 1,000,000
Delta-sarcoglycanopathy	< 1 in 13,000	< 1 in 1,000,000
Dihydrolipoamide Dehydrogenase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Dysferlinopathy	1 in 11,000	< 1 in 1,000,000
Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy)	Not calculated	Not calculated
ERCC6-related Disorders	1 in 8,500	< 1 in 1,000,000
ERCC8-related Disorders	< 1 in 16,000	< 1 in 1,000,000
EVC-related Ellis-van Creveld Syndrome	1 in 7,800	< 1 in 1,000,000
EVC2-related Ellis-van Creveld Syndrome	1 in 9,800	< 1 in 1,000,000
Fabry Disease	< 1 in 1,000,000	1 in 220,000
Familial Dysautonomia	< 1 in 50,000	< 1 in 1,000,000
Familial Hyperinsulinism, ABCC8-related	1 in 17,000	< 1 in 1,000,000
Familial Hyperinsulinism, KCNJ11-related	< 1 in 50,000	< 1 in 1,000,000
Familial Mediterranean Fever		
Fanconi Anemia Complementation Group A	1 in 11,000 1 in 2,800	< 1 in 1,000,000 < 1 in 1,000,000
Fanconi Anemia, FANCC-related	< 1 in 50,000	< 1 in 1,000,000
FKRP-related Disorders	1 in 16,000	< 1 in 1,000,000 < 1 in 1,000,000
FKTN-related Disorders		
	< 1 in 50,000 < 1 in 30,000	< 1 in 1,000,000
Free Sialic Acid Storage Disorders	•	< 1 in 1,000,000
Galactokinase Deficiency	1 in 37,000	< 1 in 1,000,000
Galactosemia	1 in 8,600	< 1 in 1,000,000
Gamma-sarcoglycanopathy	1 in 3,300	< 1 in 1,000,000
Gaucher Disease	1 in 260	1 in 110,000
GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness	1 in 2,500	1 in 260,000
GLB1-related Disorders	1 in 17,000	< 1 in 1,000,000
Glutaric Acidemia, GCDH-related	1 in 16,000	< 1 in 1,000,000
Glycine Encephalopathy, AMT-related	1 in 26,000	< 1 in 1,000,000
Glycine Encephalopathy, GLDC-related	1 in 2,500	< 1 in 1,000,000
Glycogen Storage Disease Type Ia	1 in 8,700	< 1 in 1,000,000
Glycogen Storage Disease Type Ib	1 in 35,000	< 1 in 1,000,000
Glycogen Storage Disease Type III	1 in 16,000	< 1 in 1,000,000
GNE Myopathy	1 in 23,000	< 1 in 1,000,000
GNPTAB-related Disorders	1 in 20,000	< 1 in 1,000,000
HADHA-related Disorders	1 in 20,000	< 1 in 1,000,000
Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle	1 in 3,700	1 in 560,000
Disease)	1:- 7 000	1 := 1 000 000
Hereditary Fructose Intolerance	1 in 7,900	< 1 in 1,000,000
Hexosaminidase A Deficiency (Including Tay-Sachs Disease)	1 in 30,000	< 1 in 1,000,000
HMG-CoA Lyase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Holocarboxylase Synthetase Deficiency	1 in 15,000	< 1 in 1,000,000
Homocystinuria, CBS-related	1 in 9,400	< 1 in 1,000,000
Hydrolethalus Syndrome	< 1 in 50,000	< 1 in 1,000,000
Hypophosphatasia	1 in 30,000	< 1 in 1,000,000
Isovaleric Acidemia	1 in 32,000	< 1 in 1,000,000
Joubert Syndrome 2	< 1 in 50,000	< 1 in 1,000,000
Junctional Epidermolysis Bullosa, LAMA3-related	< 1 in 50,000	< 1 in 1,000,000
Junctional Epidermolysis Bullosa, LAMB3-related	1 in 32,000	< 1 in 1,000,000
Junctional Epidermolysis Bullosa, LAMC2-related	< 1 in 50,000	< 1 in 1,000,000
Krabbe Disease	1 in 14,000	< 1 in 1,000,000
Leigh Syndrome, French-Canadian Type	< 1 in 50,000	< 1 in 1,000,000
Lipoid Congenital Adrenal Hyperplasia	< 1 in 50,000	< 1 in 1,000,000
Lysosomal Acid Lipase Deficiency	1 in 14,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type Ia	1 in 39,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type Ib	1 in 39,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type II	1 in 16,000	< 1 in 1,000,000
Medium Chain Acyl-CoA Dehydrogenase Deficiency	1 in 4,400	1 in 790,000
Megalencephalic Leukoencephalopathy with Subcortical Cysts	< 1 in 50,000	< 1 in 1,000,000
Metachromatic Leukodystrophy	1 in 16,000	< 1 in 1,000,000
Methylmalonic Acidemia, cblA Type	< 1 in 50,000	< 1 in 1,000,000

MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Disease	DONOR 10601 Residual Risk	Reproductive Ris
Methylmalonic Acidemia, cblB Type	1 in 48,000	< 1 in 1,000,000
Nethylmalonic Acidemia, MMUT-related	1 in 26,000	< 1 in 1,000,000
lethylmalonic Aciduria and Homocystinuria, cblC Type	1 in 16,000	< 1 in 1,000,000
IKS1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
lucolipidosis III Gamma	< 1 in 20,000	< 1 in 1,000,000
lucolipidosis IV	< 1 in 50,000	< 1 in 1,000,000
lucopolysaccharidosis Type I	1 in 16,000	< 1 in 1,000,000
1ucopolysaccharidosis Type II	< 1 in 1,000,000	1 in 300,000
/lucopolysaccharidosis Type IIIA	1 in 19,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIB	1 in 27,000	< 1 in 1,000,000
1ucopolysaccharidosis Type IIIC	< 1 in 50,000	< 1 in 1,000,000
Auscular Dystrophy, LAMA2-related	1 in 5,700	< 1 in 1,000,000
IYO7A-related Disorders	1 in 15,000	< 1 in 1,000,000
IEB-related Nemaline Myopathy	1 in 1,200	1 in 400,000
lephrotic Syndrome, NPHS1-related	< 1 in 50,000	< 1 in 1,000,000
ephrotic Syndrome, NPHS2-related	1 in 35,000	< 1 in 1,000,000
leuronal Ceroid Lipofuscinosis, CLN6-related	1 in 20,000	< 1 in 1,000,000
iemann-Pick Disease Type C1	1 in 19,000	< 1 in 1,000,000
iemann-Pick Disease Type C2	< 1 in 50,000	< 1 in 1,000,000
liemann-Pick Disease, SMPD1-related	1 in 25,000	< 1 in 1,000,000
lijmegen Breakage Syndrome	1 in 16,000	< 1 in 1,000,000
Prnithine Transcarbamylase Deficiency	< 1 in 1,000,000	1 in 140,000
CCA-related Propionic Acidemia	1 in 4,200	< 1 in 1,000,000
CCB-related Propionic Acidemia	1 in 22,000	< 1 in 1,000,000
CDH15-related Disorders	1 in 3,300	< 1 in 1,000,000
endred Syndrome	1 in 8,200	< 1 in 1,000,000
•		
eroxisome Biogenesis Disorder Type 1	1 in 16,000	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 3	1 in 44,000	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 4	1 in 9,300	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 5	< 1 in 71,000	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 6	< 1 in 50,000	< 1 in 1,000,000
henylalanine Hydroxylase Deficiency	1 in 4,800	1 in 940,000
OMGNT-related Disorders	< 1 in 12,000	< 1 in 1,000,000
ompe Disease	NM_000152.3(GAA):c.2238G>C(W746C)	heterozygote † 1 in 400
PT1-related Neuronal Ceroid Lipofuscinosis	1 in 7,700	< 1 in 1,000,000
rimary Carnitine Deficiency	1 in 11,000	< 1 in 1,000,000
rimary Hyperoxaluria Type 1	1 in 17,000	< 1 in 1,000,000
rimary Hyperoxaluria Type 2	< 1 in 50,000	< 1 in 1,000,000
rimary Hyperoxaluria Type 3	1 in 13,000	< 1 in 1,000,000
· · · · · · · · · · · · · · · · · · ·		
ycnodysostosis	1 in 43,000	< 1 in 1,000,000
yruvate Carboxylase Deficiency	1 in 25,000	< 1 in 1,000,000
hizomelic Chondrodysplasia Punctata Type 1	1 in 16,000	< 1 in 1,000,000
TEL1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
andhoff Disease	1 in 18,000	< 1 in 1,000,000
hort-chain Acyl-CoA Dehydrogenase Deficiency	1 in 11,000	< 1 in 1,000,000
ogren-Larsson Syndrome	< 1 in 12,000	< 1 in 1,000,000
LC26A2-related Disorders	1 in 16,000	< 1 in 1,000,000
mith-Lemli-Opitz Syndrome	1 in 9,400	< 1 in 1,000,000
pastic Paraplegia Type 15	< 1 in 50,000	< 1 in 1,000,000
1 3 11	Negative for g.27134T>G SNP	· ·
oinal Muscular Atrophy	SMN1: 2 copies 1 in 770	1 in 110,000
pondylothoracic Dysostosis	< 1 in 50,000	< 1 in 1,000,000
GM1-related Autosomal Recessive Congenital Ichthyosis	1 in 22,000	< 1 in 1,000,000
PP1-related Neuronal Ceroid Lipofuscinosis	1 in 30,000	< 1 in 1,000,000
rosine Hydroxylase Deficiency	< 1 in 50,000	< 1 in 1,000,000
· · · · · · · · · · · · · · · · · · ·		
yrosinemia Type I	1 in 16,000	< 1 in 1,000,000
yrosinemia Type II	1 in 25,000	< 1 in 1,000,000
SH1C-related Disorders	1 in 30,000	< 1 in 1,000,000
SH2A-related Disorders	1 in 4,100	< 1 in 1,000,000
Isher Syndrome Type 3	1 in 41,000	< 1 in 1,000,000

MALE
DONOR 10601
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512990642

FEMALE N/A

Wilson Disease	1 in 6,500	< 1 in 1,000,000
Vilison Discuse		< 1 in 1,000,000
X-linked Adrenal Hypoplasia Congenita	< 1 in 1,000,000	< 1 in 1,000,000
X-linked Adrenoleukodystrophy	1 in 90,000	1 in 42,000
X-linked Alport Syndrome	Not calculated	Not calculated
X-linked Juvenile Retinoschisis	< 1 in 1,000,000	1 in 40,000
X-linked Myotubular Myopathy	Not calculated	Not calculated
X-linked Severe Combined Immunodeficiency	< 1 in 1,000,000	1 in 200,000
Xeroderma Pigmentosum Group A	< 1 in 50,000	< 1 in 1,000,000
Xeroderma Pigmentosum Group C	1 in 7,300	< 1 in 1,000,000